以下是关于消除大模型幻觉的方法的相关内容:
大模型出现幻觉的原因及部分解决办法:
大模型存在的问题:
Prompt 可以减少幻觉的原因: Prompt 相当于给大模型提供了一个模板,包括对模型的要求、输入和输出的限制,使大模型在限制下得到概率最大的答案,从而提升返回的准确性。
RAG 是解决大模型问题的有效方案: RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。RAG 可与微调结合使用,两者并不冲突。但 RAG 不适合教模型理解广泛领域或学习新语言、格式或样式。
隐私泄露可以被大致分为三种:记忆隐私泄露,系统隐私泄露与上下文隐私泄露。我们先来聊聊第一种:记忆数据了、泄露。自回归语言模型的训练可以类比为模型在预训练数据中不断学习的过程,在学习的过程中,除了提取的`语言知识之外,模型无可避免的会记住一些数据。就像背诵一样,可能查询是完全没有恶意的,但模型返回了他人的隐私信息,例如左侧的ChatGPT回答,就正是模型输出了无意识记忆的url,而该url正好指向他人的隐私相册。模型的记忆形式其实和人类很类似,如果模型背诵的次数少,那么模型的记忆能力就会显著下降例如右图所示,横轴是重复次数,纵轴是被记住的可能性,可以看到见过的次数越多,模型就越容易背下来因此在LLM的数据隐私保护中,一个直观地解决办法就是让模型减少见数据的次数,少看几遍,也就记不住了第二种则是系统隐私泄露。例如,大家熟知的“骗取GPTs的System Prompt”就是系统隐私泄漏的一种。第三种则是“上下文隐私泄露”。接下来,我们来讲讲大家耳熟能详的“幻觉”问题。大语言模型偶尔会根据输入,输出一些荒谬或不符合事实的内容。目前,各家大语言模型都在该问题上表现得不尽如人意。为什么大语言模型会出现幻觉呢?以下的论文提供了一些解释:例如第一种:Imitative Falsehoods,样本存在错误。如果大语言模型这个“学生”学习的“教材”中有错误,那它也对不到哪里去。缓解该问题的一个办法是上采样(Up Sampling)。
大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
原创小宝聊AI小宝聊AI 2024-01-30 00:12发表于浙江小宝聊AI十年大厂架构师,专注于大模型技术和应用29篇原创内容公众号本文长度5000字阅读时长预计需要20分钟本文目录一、什么是Prompt二、用更加专业的方式定义Prompt三、用数学来理解Prompt四、NLP发展的四大范式五、为什么Prompt可以减少幻觉六、Open AI()提供的最佳实践七、可以直接使用Prompt的关键框架八、为什么使用框架的效果好[heading2]1、什么是Prompt[content]简单来说,其实是一套你和大模型交互的一种语言模板。通过这个模版,你可以输出你对于大模型响应的指令,用于大模型应该具体做什么指定,完成什么任务,如何处理具体的任务,并最终输出你期望的结果。虽然大模型具有基础的文字能力,能够理解你对于模型说的大部分话,但是为了达成大模型更好的回答效果,需要通过Prompt,来提升模型返回的准确性。如果说,过去的时代,人机交互的主要方式是通过代码,那么我认为在大模型时代,交互语言的主要方式其实是Prompt。[heading2]2、用更加专业的方式定义[content]Prompt大模型的本质是一个基于语言的概率模型,他返回他觉得概率最大的内容。如果是直接问大模型,没有提供Prompt,相当于大模型随机给出他的答案。有了Prompt,其实是给了一个模板,这个模板包括了对于模型的要求,输入和输出的限制,大模型在这个限制之下,去得到概率最大的答案。