Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

agent用于数据分析

Answer

以下是关于 agent 用于数据分析的相关信息:

  • 在 Coze 应用与飞书多维表格结合的场景中,使用 Coze、飞书多维表格、自定义 AI 字段捷径(也称为 Agent)来实现数据的高效抓取与批量 AI 化处理。其中涉及 Coze 定义智能体并发布到飞书多维表格字段捷径,在多维表格中使用和配置自定义的 AI 字段捷径,通过 Coze 应用的交互式界面将数据导入到飞书多维表格并驱动其自动运行,以及利用多维表格仪表盘对数据进行可视化。此应用旨在展示如何最高效率使用 AI,并将方案泛化到实际工作中,选择了不懂代码即可完成的技术路线。
  • Google Colab 推出了 Data Science Agent(AI 数据分析助手),它基于 Demini,能够加速数据科学工作流程。此代理使用 Gemini 充当编码伙伴,向 18 岁以上、使用特定国家/地区和语言的 Colab 用户推出。工作流程为:打开一个空白的 Colab 笔记本,上传数据文件,描述目标,如“可视化趋势”“构建和优化预测模型”等,然后 Data Science Agent 会根据需求生成必要的代码、导入库和分析数据。
  • Xiaohu.AI 的 Pro 会员有新功能 Agent,它可自动执行浏览器任务,如餐饮预定、外卖下单、购物及旅行安排,还新增了 Operator 功能,可显示操作过程,允许用户控制屏幕并分享已保存任务。
Content generated by AI large model, please carefully verify (powered by aily)

References

一枚扣子:Coze应用+多维表格的高速数据分析

作者@高雁首先,感谢各位小伙伴的支持!由衷感谢[Waytoagi](http://www.waytoagi.com)对AI开源的伟大贡献,让AI惠及千万人!希望,能有更多小伙伴积极拥抱开源,虽然做不成DeepSeek,但是,我们可以做成全球最大的AI开源知识社区!![heading2]一、应用的背景说明[content]1.解决的问题1.1.使用Coze、飞书多维表格、自定义AI字段捷径(这个名字不如改成叫Agent),来实现数据的高效抓取与批量AI化处理。2.技术场景2.1.Coze定义智能体,发布到飞书多维表格字段捷径。2.2.多维表格中使用和配置自定义的AI字段捷径。2.3.Coze应用,采用交互式界面将数据导入到飞书多维表格,并驱动多维表格自动运行。2.4.多维表格仪表盘对数据的可视化。3.期望达到的目的3.1.这个应用的目的,实际上是更多的是希望大家能看“如何最高效率使用AI”。抛砖引玉,让大家能将方案泛化到自己的实际工作中!同时,也选择了最适合的技术路线(不懂代码即可完成)!

3月4日 AI资讯汇总

[runway(2).mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/OQKobhHDLo5JuXxnTXicBICrngc?allow_redirect=1)🌟地址:https://x.com/i/status/1896748257650642994[heading3]Vidu API开放平台全面开放![content]现已面向企业级用户与个人开发者全面开放。🌟地址:platform.vidu.cn[heading2]🤖️AI编程[heading3]Google Colab推出Data Science Agent[content]Data Science Agent(AI数据分析助手)基于Demini,加速数据科学工作流程,此代理使用Gemini充当编码伙伴。向18岁以上、使用特定国家/地区和语言的Colab用户推出工作流程如下:打开一个空白的Colab笔记本,上传数据文件。描述目标:描述想要在Gemini中构建什么样的分析或原型(例如,“可视化趋势”、“构建和优化预测模型”、“填写缺失值”、“选择最佳统计技术”)。Data Science Agent开始工作:根据需求生成必要的代码、导入库和分析数据。[Data Science Agent(2).mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/VgYabjEY4o6dhZxD0yIcXtUUnxh?allow_redirect=1)🌟地址:https://developers.googleblog.com/en/data-science-agent-in-colab-with-gemini/?linkId=13237992

XiaoHu.AI日报

🔔Xiaohu.AI日报「1月23日」✨✨✨✨✨✨✨✨1⃣️🤖Pro会员新功能:Agent功能Agent可自动执行浏览器任务,例如餐饮预定、外卖下单、购物及旅行安排。新增Operator功能,可显示操作过程,允许用户控制屏幕并分享已保存任务。此功能或与近期GPT全球宕机有关,可能是新功能部署导致。🔗[https://x.com/imxiaohu/status/1882396818618933755](https://x.com/imxiaohu/status/1882396818618933755)2⃣️🗣️Gemini Live支持中文对话Gemini Live开始支持中文语音,但语音显得机械化,缺乏自然流畅和情感表达。相比之下,GPT的表现更具自然感和情感层次。🔗[https://x.com/imxiaohu/status/1882395053743804694](https://x.com/imxiaohu/status/1882395053743804694)3⃣️💻OpenAI开发高级AI编码助手可连接代码库,处理复杂任务,如代码重构、数据系统迁移及个性化集成。不同于ChatGPT的交互方式,助手通过Slack主动发送代码更改建议。内部测试已使用01推理模型驱动工具,帮助生成模型实验代码。🔗[https://www.xiaohu.ai/c/xiaohu-ai/openai-ai-google-6](https://www.xiaohu.ai/c/xiaohu-ai/openai-ai-google-6)4⃣️🚀Bolt․new宣布获1.055亿美元B轮融资

Others are asking
公司给我了一个调研作业,收集 市场上其它公司在agent业务变革上的优秀实践
很抱歉,目前没有关于市场上其他公司在 agent 业务变革方面优秀实践的相关内容。建议您通过以下途径进行收集和调研: 1. 行业报告和研究机构发布的分析:这些通常会涵盖多个公司在特定领域的实践和趋势。 2. 专业的行业论坛和社区:与同行交流,获取他们的经验和见解。 3. 公司的官方网站和公开资料:了解其业务变革的介绍和相关案例分享。 4. 新闻媒体报道:关注相关的商业新闻,获取最新的动态和实践案例。
2025-03-31
ai agent 案例
以下是一些关于 AI Agent 的案例和相关信息: Agentic Workflows 是强大的工具,能帮助自动化完成需决策和推理的复杂任务。文中回顾了 AI Agents 的核心组成部分,包括记忆、工具和推理能力,讨论了常见工作流模式,如规划、工具使用和反思,还概述了两个特别有效的用例,以及市场上已有的两个 AI Agents 的工作流,并探讨了其优势、局限性和挑战。 最早实现让 LLM 自己做自动化多步骤推理想法原型的是 AutoGPT 和 BabyAGI 两个开源的智能代理。随着 LLM 的推理能力和速度提高,Agent 的思路已被很多创业公司和科技巨头用到产品中,如 Devin、Google 等。 以下是一些 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,适用于构建各类问答 Bot,集成丰富插件工具。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。
2025-03-31
多模态Agent最新动态
以下是关于多模态 Agent 的最新动态: 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 近期,生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。 从 2022 年 11 月 18 日到 2023 年 7 月 26 日,多模态 Agents 迅速增长。 LLM 多模态 agent 是将现有技术融合的新尝试,是一种集成了多种模态数据处理能力的 AI 技术。 优点:高度的灵活性和扩展性,可根据不同任务需求调用最合适的模型处理任务,适应多样化任务和数据类型,优化资源使用,提升效率;无需训练,系统开发周期快,成本低。 局限性:调试和工程化难度较高,维护和升级成本高;多个组件紧密耦合,单点故障可能导致整个系统风险增加;没有涌现出新的能力。 适用场景:需要综合处理视频、语音和文本等多种信息的复杂环境,如自动驾驶汽车;高度交互和灵活的用户界面,如客户服务机器人或交互式娱乐应用。 《2024 年度 AI 十大趋势报告》 随着大模型对图像和视频信息的处理能力快速提升,预计 2025 年将开始出现更为综合性的多模态交互,AI 能够通过物联网、特定信息等多种感知通道进行协同。 多模态输入和输出使 AI 交互性更强、交互频次更高,适用场景也更加丰富,AI 产品整体水平显著提升。 Agent 作为融合感知、分析、决策和执行能力的智能体,能够根据用户历史行为和偏好,主动提供建议、提醒并个性化执行能力,为用户提供高度个性化的任务。从 2025 年开始,AI Agent 即将广泛投入使用。 从个性化推荐到直接生成个性化内容,AIGC 能够使用户体验的个性化程度有明显提升,这将帮助产品进一步完善用户体验,并通过提高用户忠诚度和迁移成本,实现差异化定价和进一步的服务增值,对产品的差异化竞争有重大意义。目前,基于 AIGC 的高度个性化已经在 AI 教育、AI 陪伴、AI 营销领域有明显进展。在硬件端搭载的多款 AI 智能助手也已开始以高度个性的个人助理作为宣传重点。
2025-03-31
agent使用案例
以下是一些关于 Agent 使用的案例: 1. 吴恩达最新演讲中提到的四种 Agent 设计范式: Reflection(反思):例如让用 Reflection 构建好的 AI 系统写代码,AI 会把代码加上检查正确性和修改的话术再返回给自己,进行自我迭代。 Tool Use:大语言模型调用插件,极大拓展了 LLM 的边界能力。 Planning:较为新颖且有前景的方式。 Multiagent:也是较新颖有前景的方式。 2. 「flowith 和它的朋友们」共同制作的最全通用 AGENT 案例合集 1.0,将案例分为三类: 研究工作类 AGENT 生活娱乐类 AGENT 学术艺术类 AGENT 3. Anthropic 提出的构建高效智能体:智能体通过与人类用户的命令或交互式对话开始工作,在执行过程中获取环境反馈,适用于难以或无法预测所需步骤数量的开放性问题。其给出的实用案例包括用于解决 SWEbench 任务的编码智能体,以及“计算机使用”参考实现让 Claude 使用计算机完成任务。
2025-03-30
目前最好的AI Agent是哪一款
目前,在 AI Agent 领域,没有绝对意义上的“最好”的一款。以下为您介绍一些受到关注的 AI Agent: 1. AutoGPT 和 BabyAGI 是最早实现让 LLM 自己做自动化多步骤推理的开源智能代理,在去年 GPT4 刚发布时风靡全球科技圈。 2. Devin 是来自纽约华人创业团队 Cognition AI 的一款可以像人类程序员一样自动写代码的 Agent,但因演示视频过于科幻而被揭露造假。 3. Google 在今年的 Next 与 I/O 大会上发布了自己的 Agent 战略,如 Google Plan Search 能自动化多步骤执行搜索任务。 4. Cursor 中的 Agent 功能,只要给它一个模糊指令,它会自动规划和解决问题。Cline 作为一个 AI 助手,也有一定的能力,其新版本还推出了检查点功能。 需要注意的是,AI Agent 领域在不断发展,不同的 Agent 在不同的应用场景和任务中可能表现出不同的优势。
2025-03-30
开源AI Agent软件有哪些
以下是一些开源的 AI Agent 软件: 1. AutoGPT 和 BabyAGI:在去年 GPT4 刚发布时风靡全球科技圈,给出了让 LLM 自己做自动化多步骤推理的解题思路。 2. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具。 3. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 4. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 5. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 6. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 7. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,智谱·AI 开源的语言模型中也有与 Agent 相关的,如 AgentLM7B、AgentLM13B、AgentLM70B 等。
2025-03-29
如何利用ai进项数据分析并制图
利用 AI 进行数据分析并制图可以参考以下步骤: 1. 明确数据需求和目标:确定您想要分析的数据内容和期望得到的图表类型,例如柱状图、饼图等。 2. 数据准备:确保数据的准确性和完整性,查看数据列名是否与预期一致。 3. 选择合适的 AI 工具:如一些具备数据分析和绘图功能的软件或平台。 4. 分析数据:对数据进行深入研究,例如将多选答案进行合理拆分和统计。 5. 生成图表:根据分析结果,使用 AI 工具生成相应的图表,并注意图表的标题、标签和字体等显示效果。 6. 调整和优化:如果生成的图表不符合要求,需要进一步调整和优化,如重新分析数据、选择不同的图表类型等。 在实际操作中,例如在“教师的 AI 减负指南生成式人工智能在教学中的应用”中,对于“此前您是否使用过生成式 AI 大语言模型?”这样的问题,可以统计不同选择的次数并绘制柱状图或饼图。对于“AI 助教在以下哪些方面对您的学习有帮助?”这样的多选问题,需要将答案合理拆分后进行统计和制图。 在 AI 绘图方面,如参加相关比赛,需要明确创作主题,确定主体,增加叙事感,注意图片的构图、色彩和光影等构成因素,合理运用构图方式,如点中心构图、九宫格构图等。推荐在 AI 绘图中使用中景及以上景别。
2025-03-18
如何利用ai进项数据分析
利用 AI 进行数据分析可以参考以下实际案例与技巧: 1. 流程: SQL 分析:用户描述想分析的内容,后台连接数据库,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型的 SQL 后执行,将结果数据传给 GPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 个性化分析:用户上传文件,如有需要可简单描述数据、字段意义或作用辅助分析。前端解析用户上传的文件,传给 GPT 分析数据,后续步骤与 SQL 分析一致。 2. 问题与技巧: SQL 分析: 反复校验是否为 SELECT SQL 语句,不仅因为 AI 不完全可控,还因不能相信用户输入,防止恶意操作。 到 AI 分析步骤拼接上下文,包含表结构信息和 SQL 语句,助 GPT 更好理解数据和字段意义,使分析更准确。 针对表结构长类型字段,不允许直接查询,最好告知 GPT 只允许查询的字段或使用的 SQL 函数,控制生成内容。 个性化分析: 用户上传的数据解析后判断数据格式是否符合要求,超长可限制截取前面若干项,防止 token 消耗过多。 在前端解析用户上传的数据,分析完直接用于渲染数据图表,无需后端返回。 支持用户补充输入,简单描述数据、字段意义或作用,辅助 AI 分析。对于易理解语义化的字段名,可不描述,GPT 也能识别。遇到多维度数据,可输入特定指令帮助 AI 准确分析。 原文地址:https://mp.weixin.qq.com/s/Fld25MxyoFEnUbnDmGJNXg 本文作者:krryguo,腾讯 IEG 前端开发工程师。声明:本文涉及与 ChatGPT 交互的数据已严格脱敏。
2025-03-18
数据分析 转成可视化图
以下是关于将数据分析转成可视化图的相关内容: 实践 1:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴图形。 打开数据集,分析数据: 发现第一行有着 Formatted Date,Precip Type,Temperature 表头,这三列与数据可视化目的明显关联,Formatted Date 数据提取整理后可作横坐标,Precip Type 数据反映月降雨天数,Temperature 数据反映气温趋势。 新建 python 文件,开始编程: 选择 python 文件,命名保存。 调用库: 读取数据:文件格式为 csv,可用 pandas 库。 数据处理:处理出 x 轴及有关气温、降雨的数据。 创建图表、添加标题与图例、保存并显示图形。 试运行与 Debug: 可能出现左纵坐标数据明显有误的情况,如降雨天数数值过大。原因是一天记录了多个时刻的天气状况,而写代码时未考虑,直接把出现“rain”的都记录了进去。 给 MarsCode 说明问题,重新生成代码,结果符合预期,可视化目的实现。 ChatGPT 助力数据分析:实际案例与技巧 问题与技巧: 公用逻辑: 在 user prompt 限定 SQL 和数据分析及其返回格式,不用 system prompt 的原因:一是 system prompt 已承载表结构信息;二是 user prompt 遵循力度更高。 分开定义单维度数据和多维度数据的 prompt,而不直接丢给让 GPT 判断的原因:存在两种结果导向的 prompt 约有 50%几率 GPT 会犯傻,最好在发送请求前用条件运算符区分格式的 prompt,代码判断后决定使用。 前端渲染图表:SQL 分析的接口或个性化分析解析的数据文件所获得的 tableData,其格式与渲染表格的格式一样为对象数组。让 GPT 判断出对象的 key 值映射:keyMap,得知维度、数据项、数据值的 key,就可拿到并处理成图表所需的 series、xAxis。 流程: 第一个 user prompt:限定 SELECT SQL,要求不要用 SELECT查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列:数据项、数据值,且不能直接查询长类型字段。 system prompt 是表结构信息,如有难以理解的字段可告知 GPT 字段意义,多个表可分开描述。 校验 GPT 生成的 SQL,不通过直接返回提示,通过再执行 SQL 查询数据。 数据分析的 user prompt:提示数据分析,限定返回的 JSON 格式:conclusion、keyMap、title。采取分开定义单维度数据和多维度数据的 prompt,根据结果数据 tableData 的维度,用条件运算符选择对应的 prompt,再传递给 GPT。 结果数据 tableData 跟随接口一起返回到前端,已通过 SQL 查询的数据,不能让 GPT 又生成一次。
2025-03-16
帮我生成一个本科的论文题目,专业是学前教育,要有数据分析
以下为您生成几个关于学前教育专业且包含数据分析的本科论文题目,供您参考: 1. 《基于数据分析的学前教育课程设置对幼儿发展的影响研究》 2. 《学前教育中幼儿游戏行为的数据分析与教育策略研究》 3. 《通过数据分析探究家庭环境对学前儿童心理健康的影响》 4. 《基于大数据分析的学前教育师资培训效果评估》 5. 《利用数据分析研究学前教育机构设施配备与幼儿学习效果的关系》
2025-03-16
AI可以做数据库的数据分析
AI 可以用于数据库的数据分析,以下是相关内容: ChatGPT 助力数据分析的流程: 逻辑流程图如下: 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 相关问题与技巧: 1. SQL 分析: 反复校验是否为 SELECT SQL 语句,不仅因为 AI 不完全可控,还因为不能相信用户输入,防止恶意操作。非查询类 SQL 坚决不通过,提示不支持此类请求。 到 AI 分析步骤拼接上下文,是为了让 GPT 更好理解数据和字段的意义,使分析更准确。 针对表结构长类型字段,不允许直接查询,防止 token 消耗过多。最好告诉 GPT 只允许查询哪几个字段,或者用哪几个 SQL 函数,尽量让 GPT 生成可控。 2. 个性化分析: 用户上传的数据解析后需判断数据格式是否符合要求,超长可限制截取前面若干项,防止 token 消耗过多。 在前端解析用户上传的数据,分析完可直接用于渲染数据图表,无需后端再返回。 支持用户补充输入,可简单描述数据、字段意义或作用,用于辅助 AI 分析。对于易理解语义化的字段名,可不描述,GPT 也能识别。遇到多维度数据,为保证准确性,可输入“以 xxx为维度分析”或“这是 xxx 数据”。 AI 术语库中的相关术语: |术语 ID|原文|译文|领域|易混淆|缩写|不需要提醒| |||||||| |ROW1|DataDriven Spectral Analysis|数据驱动的光谱分析|AI||| |ROW1|DataMining|数据挖掘|AI|1|| |ROW1|Database|数据库|AI||| |ROW1|DE Algorithm|差分进化算法|AI|1|| |ROW1|Deeplift|DeepLift 模型|AI||| |ROW1|Dendrogram|树状图|AI||| |ROW1|Density Functional Theory|密度泛函理论|AI||| |ROW1|DensityBased Spatial Clustering Of Applications With Noise|DBSCAN 密度聚类|AI||| |ROW1|Descriptor|描述符|AI||| |ROW1|DFT Calculations|DFT 计算|AI||| |ROW1|Dice Similarity|戴斯相似度|AI||| |ROW1|Differential Evolution|差分进化|AI|||
2025-03-14
怎么基于飞书表格数据分析
基于飞书表格进行数据分析可以参考以下步骤: 1. 应用的背景说明 解决的问题:使用 Coze、飞书多维表格、自定义 AI 字段捷径来实现数据的高效抓取与批量 AI 化处理。 技术场景:包括 Coze 定义智能体并发布到飞书多维表格字段捷径,多维表格中使用和配置自定义的 AI 字段捷径,Coze 应用采用交互式界面将数据导入到飞书多维表格并驱动其自动运行,以及多维表格仪表盘对数据的可视化。 期望达到的目的:更多是希望大家能了解“如何最高效率使用 AI”,并将方案泛化到自己的实际工作中,同时选择了最适合的技术路线(不懂代码即可完成)。 2. 动手实践 设计多维表格:进到飞书,新建一个多维表格,配置字段,新建一列,选择编辑列,完成相关设置。配置完后,打开自动更新,若 note_url 有赋值,模型分析会自动触发。 配置其它列:例如在第一列中设置提取标题,同理可新建列提取正文、点赞、转发、评论列表等数据,进行更多自动化处理,包括笔记内容分析、仿写、改写,封面分析、标题拆解、图文复刻、视频提取分析(逐帧解析)分析视频、音频和字幕等数据分析,基于评论列表的舆情分析、情绪分析、线索挖掘、需求挖掘等。 更多资源:关于多维表格相关教程,推荐复习。 3. 创建知识库并上传表格数据 上传方式:本地文档 操作步骤: 在表格格式页签下,选择本地文档,然后单击下一步。 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档,然后单击下一步。目前支持上传.csv 和.xlsx 格式的文件内容,且表格内需要有列名和对应的数据。每个文件不得大于 20M。一次最多可上传 10 个文件。 配置数据表信息后,单击下一步。包括指定数据范围(通过选择数据表、表头、数据起始行指定数据范围)、确认表结构(系统已默认获取了表头的列名,可自定义修改列名,或删除某一列名)、指定语义匹配字段(选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配)。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。
2025-03-12
我是一名ai小白,我现在系统学习ai的一切创作,并利用于工作中,请问怎么从头开始学习
对于 AI 小白想要系统学习 AI 并应用于工作,您可以按照以下步骤从头开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 参考「」,其中有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 参考他人的学习经验: 可以参考《雪梅 May 的 AI 学习日记》,了解他人的学习模式和经验。比如作者采用输入→模仿→自发创造的模式,并且学习资源都是免费开源的。 总之,学习 AI 需要耐心和持续的努力,祝您学习顺利!
2025-03-24
我想写一篇本科生论文,给出我需要的所有用于ai写论文用的指令
以下是利用 AI 写本科生论文的一些指令和步骤: 1. 确定论文主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析(若涉及):如果论文涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-03-20
我想做一个AI机器人,用于自动回复我的抖音新消息,现在有办法能解决吗
目前可以通过 Coze 平台来实现让 AI 机器人自动回复您的抖音新消息。以下是相关信息: 微信的不同功能与 Coze 平台对接情况: 个人微信/微信群:之前 Coze 平台不支持直接对接,但国内版已正式发布 API 接口功能,直接对接成为可能。 微信公众号:Coze 平台支持对接,AI 机器人可自动回复用户消息。 微信服务号:Coze 平台支持对接,能提升服务效率。 微信客服:Coze 平台支持对接,可自动回答用户咨询,提高客服响应速度。 配置 AI 微信聊天机器人的步骤: 登录成功后,找另一个人私聊或者在群中@您,能看到机器人正常回复。 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”进行更改。 此后进行任何更改,都需“返回首页 右上角 点击重启,重启一下服务器”。 然后,在“文件”的【终端】里,输入“nohup python3 app.py&tail f nohup.out 重新扫码登录”。 关于添加插件,可参考。 疑问解答: 放行端口:类似于给房子安装门铃,通过放行特定端口(如 8888 端口)可通过互联网访问宝塔面板,管理和配置服务器上的服务。 Bot ID:是在 Coze 平台上创建的 AI 机器人的唯一标识,用于将微信号与特定机器人关联。 微信账号被封:若因使用机器人被封,可尝试联系客服说明情况。建议使用专门微信号作为机器人账号,并遵守微信使用规范。 服务器:需要一直开着,以保证机器人随时在线响应请求。 不懂编程:完全可以配置,按照教程一步一步操作即可。 配置问题:检查每步是否按教程操作,特别是 API 令牌和 Bot ID 是否正确。无法解决可到 Coze 平台的论坛或微信群求助。
2025-03-19
我想用使用AsrTools,用于语言转文字,如何使用
AsrTools 是一款批量语音转文字工具。但关于其具体的使用方法,目前所提供的信息中并未有详细描述。您可以通过以下常规步骤来尝试使用类似工具:首先,获取 AsrTools 软件并进行安装;然后,打开软件,查找导入语音文件的入口,将您需要转换的语音文件导入;接下来,根据软件界面的提示或设置选项,选择合适的转换参数,如语言类型、识别精度等;最后,点击开始转换按钮,等待转换完成并获取转换后的文字结果。您还可以查看该工具的官方文档或帮助说明,以获取更准确和详细的使用指导。
2025-03-19
动画音效ai,用于生成视频中的特殊音效,比如呼吸声,爆炸声,脚步声等等
以下是关于动画音效 AI 用于生成视频中特殊音效(如呼吸声、爆炸声、脚步声等)的相关信息: 1. 11Labs AI 音效:可以在一段提示语中放入不同画面的描述音效来生成一整个视频音效,但目前可用性有待提高,一次生成可能有 2 3 条不能用。实际操作中,分开画面来做音效合成更方便调整。例如 20s 视频可分为 5 个不同的音效合成,如城市背景噪音、无声的脚步声、电子嗡嗡声、心跳加速、警笛声等。 2. 游戏中的生成式 AI 革命:音效是 AI 的一个具有吸引力的开放领域。已有学术论文探讨在电影中生成“现场效果音”(如脚步声)的想法,但在游戏中的商业产品尚属稀少。游戏中传统的音效生成和管理繁琐且重复不真实,使用实时的生成性 AI 模型来制作现场效果音可以在飞行中生成适当音效,每次略有不同,并能根据游戏参数响应。 3. 喂饭级教程:在视频制作中,音效库可以通过搜索框输入关键词(如开门声)来选择合适的音效试听并添加到音轨。
2025-03-15
请生成一段提示词,用于模特佩戴翡翠珠宝饰品的效果图
以下是一段用于模特佩戴翡翠珠宝饰品的效果图的提示词: breathtaking cinematic photo, masterpiece, best quality, , blonde hair, carrying a light green bag, standing, full body, detailed face, big eyes, detailed hands, wearing a jade jewelry set, fashion photography, studio light,.35mm photograph, film, bokeh, professional, 4k, highly detailed. awardwinning, professional, highly detailed. Negative prompt: ugly, disfigured, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
2025-03-13