Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

DeepSeek搭建 个人知识库

Answer

以下是关于 DeepSeek 搭建的相关知识:

  • 对于个人知识库的搭建,您可以参考以下内容:
    • 章节“三.使用 DeepSeek R1 给老外起中文名”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-DyEMdmCPOo98S6xbPfNcsuEOnuh
    • 知识点“Node.JS 安装”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-PVnndBSV5oWOukx38tKcw2CPnub
    • 申请“DeepSeek R1 API”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-TrXednqLAoH3VLxrUiYc1Pb9nhf
    • 网页接入“DeepSeek API”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UK5xdzhiaoo9RkxHR5bcs30pnV8
    • 章节“一.Trae 的介绍/安装/疑难杂症”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-R4GvdgOzeoC9mOxd1hScuql6nVY
    • Python 安装:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Kcojdhid9oWJPjxAvEOczRt0nkg
  • 一个提示词让 DeepSeek 的能力更上一层楼的相关内容:
    • 效果对比:用 Coze 做了个小测试,大家可以对比看看,视频链接:e8c1a8c3012fedad10dc0dfcc8b1e263_raw.mp4
    • 如何使用:
      • 搜索 www.deepseek.com,点击“开始对话”
      • 将装有提示词的代码发给 Deepseek
      • 认真阅读开场白之后,正式开始对话
    • 设计思路:
      • 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担
      • 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能
      • 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性
      • 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改
      • 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)
    • 完整提示词:v 1.3
    • 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手
  • 五津:DeepSeek+扣子:1 分钟生成小红书爆款单词视频:
    • 先观察此类视频规律,如先问这是什么→再揭晓结果,反复多次。
    • 拆解视频模板的制作流程,逐个轨道分析,注意各轨道上的元素时间对应关系。
    • 涉及的知识点可用于用扣子工作流来搭建。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI编程与炼金术:Build on Trae

[heading1]全文知识图谱蓝色文字跳转到文档对应位置)(不断更新)|章节_[三.使用DeepSeek R1给老外起中文名](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-DyEMdmCPOo98S6xbPfNcsuEOnuh)|知识点_[Node.JS安装](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-PVnndBSV5oWOukx38tKcw2CPnub)|[申请DeepSeek R1 API](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-TrXednqLAoH3VLxrUiYc1Pb9nhf)|[网页接入DeepSeek API](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UK5xdzhiaoo9RkxHR5bcs30pnV8)||-|-|-|-||[一.Trae的介绍/安装/疑难杂症](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-R4GvdgOzeoC9mOxd1hScuql6nVY)|[Python安装](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Kcojdhid9oWJPjxAvEOczRt0nkg)||||[二.图片字幕生成器](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Yev6dqzNmolizDxG2PWcKj8Pn8y)|[用多模态复刻产品](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-PHwVdl7gCoZEehxUmiUcDeO8nde)|||下面我们正式开始:

一个提示词,让 DeepSeek 的能力更上一层楼?——HiDeepSeek

用Coze做了个小测试,大家可以对比看看[e8c1a8c3012fedad10dc0dfcc8b1e263_raw.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/Jz9cbKxDbocGtIxXFFEcdiHjnRc?allow_redirect=1)[heading1]如何使用?[content]Step1:搜索www.deepseek.com,点击“开始对话”Step2:将装有提示词的代码发给DeepseekStep3:认真阅读开场白之后,正式开始对话[heading1]设计思路[content]1.将Agent封装成Prompt,将Prompt储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担2.通过提示词文件,让DeepSeek实现:同时使用联网功能和深度思考功能3.在模型默认能力的基础上优化输出质量,并通过思考减轻AI味,增加可读性4.照猫画虎参考大模型的temperature设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改5.用XML来进行更为规范的设定,而不是用Lisp(对我来说有难度)和Markdown(运行下来似乎不是很稳定)[heading1]完整提示词[heading2]v 1.3[heading1]特别鸣谢[content]李继刚:【思考的七把武器】在前期为我提供了很多思考方向Thinking Claude:这个项目是我现在最喜欢使用的Claude提示词,也是我设计HiDeepSeek的灵感来源Claude 3.5 Sonnet:最得力的助手

五津: DeepSeek+扣子:1分钟生成小红书爆款单词视频

大家好,我是五津。我们经常在小红书、抖音上见到这种爆款单词视频:[1942_1739600222.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/QdkMbOT4Eo31Z3xsRc9cGllInhb?allow_redirect=1)仔细观察这个视频,我们会发现,这个视频有规律:先问这是什么→再揭晓结果,反复多次。这种有规律的视频,可以考虑用扣子来制作,效果如下:[2月10日(1).mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/AnAybCVuGosEV0xuWpTcJ8JTnTg?allow_redirect=1)[heading1]拆解视频[content]想实现这种视频模板,我们先拆解这个模板的制作流程,理解了这个思路,后续做其他类似的单词卡片视频,就会做了。想象你在做视频剪辑,视频剪辑会有图片轨道、音频轨道、文字轨道,逐个轨道分析。注意:各轨道上的元素时间对应关系。[heading1]涉及的知识点[content]理解了这个流程之后,我们就可以用扣子工作流来搭建了,这其中涉及到了以下知识点:

Others are asking
是否有《普通人如何抓住deepseek红利》清华大学链接
以下是关于《普通人如何抓住 DeepSeek 红利》的相关链接: 清华大学新闻与传播学院撰写的报告:https://waytoagi.feishu.cn/record/T2yDrJ4NjeJFmccnBgzc5A7InIq 相关 PPT 课件:https://bl7rsz9526.feishu.cn/wiki/Gec9wxIGhiqSsAkrqzPc3ObLnpb (由清华大学新闻与传播学院、新媒体研究中心、元宇宙文化实验室、@新媒沈阳团队的陶炜博士生团队制作)
2025-02-20
你知道deepseek吗
DeepSeek 在春节期间非常火爆,不仅在各大平台刷屏,还引起了广泛讨论。 从非技术人的角度来看,对 DeepSeek 的研究主要围绕以下话题: 1. 天才养成记:DeepSeek R1 之所以聪明的原因。 2. “填鸭”之困:传统大模型训练的瓶颈。 3. 自学成才:DeepSeek R1 的破局之道。 4. 纯强化学习:再次带来 AI 超越人类的希望。 DeepSeek 是一个品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。DeepSeek 公司名为深度求索,其网页和手机应用目前免费,API 调用收费。DeepSeek 大模型,尤其是有推理功能的 DeepSeek R1 大模型,权重文件开源,可本地部署。
2025-02-20
清华出品的deepseek应用手册在哪里下载
清华出品的 DeepSeek 相关应用手册的下载链接如下: 清华大学沈少阳:《 北航&清华大学:《 《 其它一些报告发布在 。
2025-02-20
给出实际的操作案例,结合deepseek、kimi、豆包工具。
以下是结合 deepseek、kimi、豆包工具的实际操作案例: 在 2025 年 1 月的国内月活榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,活跃用户达 7068 万人,环比变化为 24.3616%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,活跃用户为 779 万人,环比变化为 0.1911%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,活跃用户为 591 万人,环比变化为 0.1135%,所属公司为月之暗面。 在 2025 年 1 月的国内流量榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,访问量达 22541 万,环比变化为 20.4093%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,访问量为 3457 万,环比变化为 0.1041%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,访问量为 3282 万,环比变化为 0.1283%,所属公司为月之暗面。 此外,在使用效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上天衣无缝。
2025-02-20
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 其秘方具有硅谷风格: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方只是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷风格。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试并对比。 使用方法:包括搜索网站、点击“开始对话”、发送装有提示词的代码、阅读开场白后开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并储存在文件,实现多种功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-02-20
deepseek怎么用
以下是关于 DeepSeek 的使用方法: 1. 访问 www.deepseek.com ,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek 。 3. 认真阅读开场白之后,正式开始对话。 此外,获取 DeepSeekR1 满血版密钥的步骤如下: 1. 注册并登录火山引擎,点击立即体验进入控制台。链接为:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”,这里就是源头) 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。然后可能会提示:“该模型未开通,开通后可创建推理接入点”。如果有提示,就点击“立即开通”,开通一下就可以了。如果无提示则直接到:第 5 步,点击确认接入。 4. 点击“立即开通”跳转到此页面,勾选全部模型和协议,一路点击开通即可。(这里是免费的) 5. 确认以下无误后,点击“确认接入”按钮。 6. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点来了:这个就是推理点的 ID,复制他放到您的微信里,发给自己保存一下。 7. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 如果您已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】。 9. 把这个复制好之后,也放到您自己微信里,保存好。 DeepSeek 的设计思路包括: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 关于 DeepSeek 的使用分享: 1. DP 模型的功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 2. 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 3. 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 4. 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 5. 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 6. 使用场景:包括阅读、育儿、写作、随意交流等方面。 7. 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 另外,DeepSeek 文档可以在 3 群和 4 群分享中获取,也可在 v to a gi 的飞书知识库中搜索获取。未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek 。
2025-02-20
waytoagi 的飞书知识库智能问答机器人是怎么做的
waytoagi 的飞书知识库智能问答机器人是基于飞书 aily 搭建的。在飞书 5000 人大群里内置了名为「waytoAGI 知识库智能问答」的智能机器人,它会根据通往 AGI 之路的文档及知识进行回答。 其具有以下功能和特点: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 使用方法: 1. 在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 2. 可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码需在获取),然后点击加入,直接@机器人即可。 3. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 搭建问答机器人的相关情况: 1. 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 2. 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 3. 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 4. 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 5. 飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-02-20
如何搭建自己的知识库
搭建自己的知识库可以参考以下步骤: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM 生成答案。 2. 文本加载器:将用户提供的文本加载到内存中,便于后续处理。 3. 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限。 OpenAI 提供了 embedding API 解决方案,embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 4. 本地知识库进阶: 可使用额外软件 AnythingLLM,其包含 Open WebUI 的能力,并支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建 Workspace 构建本地知识库,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案),最后进行测试对话。 总之,搭建知识库需要不断实践和探索,“看十遍不如实操一遍,实操十遍不如分享一遍”。
2025-02-20
现在有哪些个人知识库软件可以用,请推荐。
以下是为您推荐的个人知识库软件: 1. Coze:如果您想使用专门搭建个人知识库的软件,可以参考文章,忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API,建议先了解 RAG 的原理再使用。 2. AnythingLLM:包含所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型和向量数据库。安装地址:https://useanything.com/download 。安装完成后,配置页面主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式),配置完成后即可进行对话测试。 此外,还有通过 GPT 打造个人知识库的方法,比如将文本转换成向量节省空间,拆分成小文本块并通过 embeddings API 转换成 embeddings 向量,在向量储存库中保存这些向量和文本块作为问答的知识库。当用户提问时,将问题转换成向量与库中向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。
2025-02-19
waytoagi的知识库基于哪个LLM创建的
目前没有明确的信息表明 waytoagi 的知识库基于哪个 LLM 创建。但以下信息可能对您有所帮助: AnythingLLM 包含了所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型、选择向量数据库等。安装地址为:https://useanything.com/download 。安装完成后配置主要分为三步,包括选择大模型、选择文本嵌入模型、选择向量数据库。AnythingLLM 中有 Workspace 的概念,可创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式)等。 GitHubDaily 开源项目列表中提到了 AnythingLLM,它是一个可打造成企业内部知识库的私人专属 GPT,可以将任何文档、资源或内容转换为大语言模型(LLM)知识库。
2025-02-19
用飞书搭建知识库并进行AI问答
以下是关于用飞书搭建知识库并进行 AI 问答的相关内容: 知识库问答是机器人的基础功能,可根据用户问题从知识库中找到最佳答案,这利用了大模型的 RAG 机制。RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。 简单来说,RAG 机制先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成当问复杂问题时,RAG 机制先在巨大图书馆里找相关书籍,再基于这些书籍信息给出详细回答。这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制实现知识库问答功能,首先要创建包含大量社区 AI 相关文章和资料的知识库,比如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传栏目所有文章内容,陆续将社区其他板块文章和资料导入。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回内容结合回答。 另外,全程白嫖拥有一个 AI 大模型的微信助手的搭建步骤如下: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并获取白嫖大模型接口的方法。 2. 搭建,这是个知识库问答系统,放入知识文件,接入上面的大模型作为分析知识库的大脑来回答问题。若不想接入微信,搭建到此即可使用,它有问答界面。 3. 搭建,其中的 cow 插件能进行文件总结、MJ 绘画。
2025-02-19
有哪些比较好的AI知识库学习网站
以下是一些比较好的 AI 知识库学习网站及相关学习建议: 通往 AGI 之路知识库: 提供了全面系统的 AI 学习路径,帮助您了解从 AI 常见名词到 AI 应用等各方面知识。 包含关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍等内容。 信息来源有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 有社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 学习路径方面,有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 有历史脉络类资料,整理了 open AI 的发展时间线和万字长文回顾等。 网站:ytoAGI.com 相关渠道:公众号“通往 AGI 之路”、 在线教育平台:如 Coursera、edX、Udacity 等,上面有一系列为初学者设计的课程,您可以按照自己的节奏学习,并有机会获得证书。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-02-18
怎么用AI搭建工作流
搭建 AI 工作流可以参考以下步骤: 1. 搭建 AI 工作流的三种能力: 熟悉各种 AI 工具:了解多个不同 AI 工具的特点和用途,根据具体细分任务选择合适的工具。例如,写标题可用 ChatGPT,写文章可用 Claude,检查文本中的错别字和病句可用秘塔写作猫的 AI 纠错功能。 编写提示词:搭建起人与 AI 之间的“沟通桥梁”,用 AI 能听懂的语言清晰说明需求、任务内容和步骤。 搭建 AI 智能体。 2. 搭建 AI 工作流的工作流: 找到一个工作场景:选择熟悉的工作场景,如写文章、做 PPT 等。 拆解工作流程:将工作拆解成几个小步骤,如写文章可拆分为选题、写稿、改稿、写标题等。 给每一个步骤嵌入工具:针对每个小步骤,思考有无 AI 工具可帮忙,若想不到可参考他人做法,注意灵活选择最优解,目的是提高工作效率而非增加工作的含 AI 量。 此外,在搭建工作流时还需注意: 打开 Comfyui 界面后,右键点击界面,可找到 Comfyui LLM party 的目录,学习手动连接节点实现最简单的 AI 女友工作流,或直接将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 从 ollama 的 github 仓库找到对应版本并下载,启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 若 ollama 连接不上,可能是代理服务器的问题,需将 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-20
多智能体应用搭建
多智能体是由多个自主、独立的智能体组成的系统,每个智能体都能感知环境、决策并执行任务,且相互间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型的出现,以其为核心构建的 Agent 系统受广泛关注。单 Agent 核心在于语言模型与工具的协同配合,可能需与用户多轮交互。而多 Agent 为不同 Agent 分配角色并通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架的主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,包含全局状态信息,且 Agent 与环境有信息交互与更新。 2. 阶段:通常采用 SOP 思想将复杂任务分解为多个子任务。 3. 控制器:可以是语言模型或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:因 Agent 数量增多,消息数量及相关字段记录更复杂。 创建智能体时,输入人设等信息并配置工作流,配置完成后可测试,但注意工作流中某些插件的 api_token 不能直接发布,可作为输入让用户购买后输入使用再发布。 OpenAI 官方开源的多智能体框架「Swarm」受欢迎,其在多智能体通信方面表现出色,解决了不同智能体之间传递信息及传递哪些信息等核心难题。例如构建客服多智能体,只需准备普通接线客服和宽带客服两个 Agent,「Swarm」的「Handoffs」处理了交接逻辑。
2025-02-20
搭建AI智能体
搭建 AI 智能体的步骤和要点如下: 1. 创建智能体:输入人设等信息,并放上相关工作流。配置完成后可以进行测试,但千万不要直接发布。 工作流中如【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,其他人调用会消耗您的费用。您可以将 api_token 作为工作流最开始的输入,用户购买后输入 token 再发布。 2. 明确需求和 AI 能力: 在搭建智能体帮助提炼品牌卖点时,需要先明确 AI 的能力边界,例如 AI 对公司及所在市场不了解的部分,包括公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望在新渠道获得的结果等。 AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。因此,更适合将智能体作为引导型的灵感提问助手。 3. 学会搭建 AI 智能体: AI 智能体如同员工或智能助手,能根据设定的工作流自动调用不同 AI 工具完成全流程任务,无需人类时刻干预。 例如设计“写作助手”的 AI 智能体,输入文章主题、风格和要求,它能自动完成文章大纲处理、初稿撰写、修改润色和排版等工作,大大提高效率。
2025-02-19
如何用ai搭建一个学习平台,完成学习计划
以下是用 AI 搭建学习平台并完成学习计划的一些方法和建议: 英语学习: 1. 智能辅助工具:利用如 Grammarly 这样的 AI 写作助手进行英语写作和语法纠错,以改进英语表达和写作能力。 2. 语音识别和发音练习:使用如 Call Annie 这样的语音识别应用进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用如 Duolingo 这样的自适应学习平台,其利用 AI 技术为您量身定制学习计划,提供个性化的英语学习内容和练习。 4. 智能导师和对话机器人:利用如 ChatGPT 这样的智能对话机器人进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:使用如 Khan Academy 这样的自适应学习系统,结合 AI 技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。 2. 智能题库和作业辅助:利用如 Photomath 这样的智能题库和作业辅助工具,通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 3. 虚拟教学助手:使用如 Socratic 这样的虚拟教学助手,利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 4. 交互式学习平台:参与如 Wolfram Alpha 这样的交互式学习平台的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 外语学习: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行学习,并取得更好的学习效果。
2025-02-18
实现基于个人聊天记录的数字分身的最佳实践
实现基于个人聊天记录的数字分身的最佳实践包括以下方面: 虚拟数字人的类型和驱动方式: 虚拟数字人通过各种技术创造,具有外观、行为和思想等人类特征,呈现为虚拟形象。 从驱动层面可分为中之人驱动和 AI 驱动两类。中之人驱动运用动作捕捉和面部捕捉技术实现交互,有上限且缺乏高并发和量产化能力;AI 驱动使用 AI 技术创建、驱动和生成内容,赋予感知和表达等交互能力。 虚拟数字人的应用类型: 服务型:如虚拟主播、助手、教师、客服和医生等,为物理世界提供服务。 表演型:如虚拟偶像,用于娱乐、影视等场景。 身份型:是物理世界“真人”进入虚拟世界的数字分身,在元宇宙中有广泛应用场景。 相关开源项目: 熊猫大侠基于 COW 框架的 ChatBot 最新版本支持多端部署、基础对话、语音识别、图片生成、丰富插件、Tool 工具和知识库等功能。可接入个人微信、微信公众号、企业微信应用,支持多种模型和个性化插件扩展,通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用。项目地址包括 Github:https://github.com/zhayujie/chatgptonwechat ,Gitee:https://gitee.com/zhayujie/chatgptonwechat 。
2025-02-20
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
搭建个人知识库的具体操作是什么?
搭建个人知识库的具体操作如下: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载不同类型的文档。 文本分割器把文档切分为指定大小的块。 存储涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 通过检索算法找到与输入问题相似的嵌入片。 把问题以及检索出来的嵌入片一起提交给 LLM 生成答案。 2. 本地知识库进阶: 若要更灵活掌控知识库,需使用 AnythingLLM 软件,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离。 操作包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 3. 使用 embeddings: 将文本转换成向量能节省空间,可理解为索引。 把大文本拆分成小文本块,通过 embeddings API 转换成向量,在向量储存库保存向量和文本块作为知识库。 用户提问时,问题先转成向量,与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。 例如,对于“此文作者是谁?”的问题,通过比较向量可找到关联度高的文本块。
2025-02-13
我想用deepseek 写微信公众号文章,我将要写的主题告诉他,让它为我生成个人角度的文章,我要写的主题一般围绕着软件分享,技术分享等。请你根据我的要求为我写一份适用的提示词
以下是为您生成的适用于使用 DeepSeek 写微信公众号文章的提示词: 我要写一篇关于软件分享或技术分享的微信公众号文章,文章标题要足够吸引人,以便能广泛传播。文章内容要详细且有条理,先介绍分享的软件或技术的基本情况,包括其功能、特点和优势;然后结合实际案例或个人使用体验,阐述其在实际应用中的效果和价值;最后总结并展望其未来的发展前景。请为我生成这样一篇完整的文章。
2025-02-12
个人知识库
以下是关于个人知识库的相关内容: 使用 GPT 打造个人知识库: 将文本拆分成小文本块(chunk),通过 embeddings API 转换成 embeddings 向量,在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,问题先转换成问题向量,与向量储存库中的文本块向量比对,提取关联度高的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如对于“此文作者是谁?”的问题,可根据向量关联度提取相关文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。” 理解 embeddings: embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 向量是数学中表示大小和方向的量,通常用一串数字表示,在计算机科学和数据科学中常用列表表示。 向量之间的距离有多种计算方式,常见的是欧几里得距离。 在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。 手把手教你本地部署大模型以及搭建个人知识库: 思路来源于视频号博主黄益贺。 作者按照视频进行实操并附加了关于 RAG 的额外知识。 读完本文可学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 的信息流转、RAG 的概念及核心技术、通过 AnythingLLM 搭建本地化数据库等。
2025-02-12