Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

现在有哪些个人知识库软件可以用,请推荐。

Answer

以下是为您推荐的个人知识库软件:

  1. Coze:如果您想使用专门搭建个人知识库的软件,可以参考文章手把手教你本地部署大模型以及搭建个人知识库,忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API,建议先了解 RAG 的原理再使用。
  2. AnythingLLM:包含所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型和向量数据库。安装地址:https://useanything.com/download 。安装完成后,配置页面主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式),配置完成后即可进行对话测试。

此外,还有通过 GPT 打造个人知识库的方法,比如将文本转换成向量节省空间,拆分成小文本块并通过 embeddings API 转换成 embeddings 向量,在向量储存库中保存这些向量和文本块作为问答的知识库。当用户提问时,将问题转换成向量与库中向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。

Content generated by AI large model, please carefully verify (powered by aily)

References

这可能是讲 Coze 的知识库最通俗易懂的文章了

终于到了我最想讲的一段了,因为自从我发布了这个教程[大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb)之后,我收到的最多问题之一就是:为什么我将我的笔记全部投喂给Coze之后,他的回答很不准确呢?为了回答这个问题,我每次都要语音个10-20分钟,这也是我写这篇文章的目的,毕竟坑是自己埋下的,含着泪也要填完如果你是要利用Coze或者FastGPT等工具来搭建知识库,那么在当下的技术条件下,你一定要有个预期,当下这些平台的RAG能力仅仅对问答这种场景是友好的,其他的场景效果都差强人意~如果你需要企业级的复杂知识库场景,你可能需要找专业的团队了,他们的收费在几万到几十万不等(可以联系我,我这边有靠谱的资源)如果你想使用专门搭建个人知识库的软件,我推荐你看下的另一篇文章:[手把手教你本地部署大模型以及搭建个人知识库](https://waytoagi.feishu.cn/wiki/ZKGmwsQhTihYZ8kdu7uccF1lnQc?from=from_copylink)这篇文章你忽略本地部署大模型这一环节,你直接看其中推荐的一个软件这款软件据说效果不错(但是需要你自己对接一些额外的API),并且我建议你先了解RAG的原理再去使用,否则你可能会头大。我目前还没有深度使用,等后续使用了,我再了些教程!

手把手教你本地部署大模型以及搭建个人知识库

如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有Open WebUI的能力,并且额外支持了以下能力选择文本嵌入模型选择向量数据库[heading2]AnythingLLM安装和配置[content]安装地址:https://useanything.com/download当我们安装完成之后,会进入到其配置页面,这里面主要分为三步1.第一步:选择大模型1.第二步:选择文本嵌入模型1.第三步:选择向量数据库[heading2]构建本地知识库[content]AnythingLLM中有一个Workspace的概念,我们可以创建自己独有的Workspace跟其他的项目数据进行隔离。1.首先创建一个工作空间1.上传文档并且在工作空间中进行文本嵌入1.选择对话模式AnythingLLM提供了两种对话模式:Chat模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案Query模式:大模型仅仅会依靠文档中的数据给出答案1.测试对话当上述配置完成之后,我们就可以跟大模型进行对话了[heading1]六、写在最后[content]我非常推崇的一句话送给大家:看十遍不如实操一遍,实操十遍不如分享一遍如果你也对AI Agent技术感兴趣,可以联系我或者加我的免费知识星球(备注AGI知识库)

从零开始,用GPT打造个人知识库

上面将文本转换成向量(一串数字)能大大节省空间,它不是压缩,可简单理解为索引(Index)。接下来就有意思了。比如我有一个大文本,可以先把它拆分成若干个小文本块(也叫chunk),通过embeddings API将小文本块转换成embeddings向量,这个向量是跟文本块的语义相关。在一个地方(向量储存库)中保存这些embeddings向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过embeddings API转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的prompt(问题/提示词),发送给GPT API。这样一来就不用一次会话中输入所有领域知识,而是输入了关联度最高的部分知识。一图胜千言,转一张原理图。再举一个极其简单的例子,比如有一篇万字长文,拆分成Chrunks包含:文本块1:本文作者:越山。xxxx。文本块2:公众号越山集的介绍:传播效率方法,分享AI应用,陪伴彼此在成长路上,共同前行。文本块3:《反脆弱》作者塔勒布xxxx。文本块4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。...文本块n如果提问是”此文作者是谁?“。可以直观的看出上面的文本块1跟这个问题的关联度最高,文本块3次之。通过比较embeddings向量也可以得到这结论。那最后发送给GPT API的问题会类似于”此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。“这样一来,大语言大概率能回答上这个问题。

Others are asking
deepseek本地部署知识库
以下是关于 DeepSeek 本地部署知识库的相关信息: 您可以参考以下链接获取更多详细内容: DeepSeek 资料库:照着做可直接上手🔗 需要注意的是,日报中提到本地部署并不适合普通用户,纳米 AI 搜索是目前较为稳定的第三方替代方案,其满血版推理能力接近官方但速度较慢,高速版速度快、体验流畅但推理能力稍弱。体验地址:🔗或下载纳米 AI 搜索 APP 。
2025-02-21
waytoagi 的飞书知识库智能问答机器人是怎么做的
waytoagi 的飞书知识库智能问答机器人是基于飞书 aily 搭建的。在飞书 5000 人大群里内置了名为「waytoAGI 知识库智能问答」的智能机器人,它会根据通往 AGI 之路的文档及知识进行回答。 其具有以下功能和特点: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 使用方法: 1. 在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 2. 可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码需在获取),然后点击加入,直接@机器人即可。 3. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 搭建问答机器人的相关情况: 1. 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 2. 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 3. 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 4. 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 5. 飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-02-20
如何搭建自己的知识库
搭建自己的知识库可以参考以下步骤: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM 生成答案。 2. 文本加载器:将用户提供的文本加载到内存中,便于后续处理。 3. 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限。 OpenAI 提供了 embedding API 解决方案,embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 4. 本地知识库进阶: 可使用额外软件 AnythingLLM,其包含 Open WebUI 的能力,并支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建 Workspace 构建本地知识库,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案),最后进行测试对话。 总之,搭建知识库需要不断实践和探索,“看十遍不如实操一遍,实操十遍不如分享一遍”。
2025-02-20
DeepSeek搭建 个人知识库
以下是关于 DeepSeek 搭建的相关知识: 对于个人知识库的搭建,您可以参考以下内容: 章节“三.使用 DeepSeek R1 给老外起中文名”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareDyEMdmCPOo98S6xbPfNcsuEOnuh 知识点“Node.JS 安装”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcsharePVnndBSV5oWOukx38tKcw2CPnub 申请“DeepSeek R1 API”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareTrXednqLAoH3VLxrUiYc1Pb9nhf 网页接入“DeepSeek API”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareUK5xdzhiaoo9RkxHR5bcs30pnV8 章节“一.Trae 的介绍/安装/疑难杂症”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareR4GvdgOzeoC9mOxd1hScuql6nVY Python 安装:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareKcojdhid9oWJPjxAvEOczRt0nkg 一个提示词让 DeepSeek 的能力更上一层楼的相关内容: 效果对比:用 Coze 做了个小测试,大家可以对比看看,视频链接: 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手 五津:DeepSeek+扣子:1 分钟生成小红书爆款单词视频: 先观察此类视频规律,如先问这是什么→再揭晓结果,反复多次。 拆解视频模板的制作流程,逐个轨道分析,注意各轨道上的元素时间对应关系。 涉及的知识点可用于用扣子工作流来搭建。
2025-02-20
waytoagi的知识库基于哪个LLM创建的
目前没有明确的信息表明 waytoagi 的知识库基于哪个 LLM 创建。但以下信息可能对您有所帮助: AnythingLLM 包含了所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型、选择向量数据库等。安装地址为:https://useanything.com/download 。安装完成后配置主要分为三步,包括选择大模型、选择文本嵌入模型、选择向量数据库。AnythingLLM 中有 Workspace 的概念,可创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式)等。 GitHubDaily 开源项目列表中提到了 AnythingLLM,它是一个可打造成企业内部知识库的私人专属 GPT,可以将任何文档、资源或内容转换为大语言模型(LLM)知识库。
2025-02-19
用飞书搭建知识库并进行AI问答
以下是关于用飞书搭建知识库并进行 AI 问答的相关内容: 知识库问答是机器人的基础功能,可根据用户问题从知识库中找到最佳答案,这利用了大模型的 RAG 机制。RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。 简单来说,RAG 机制先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成当问复杂问题时,RAG 机制先在巨大图书馆里找相关书籍,再基于这些书籍信息给出详细回答。这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制实现知识库问答功能,首先要创建包含大量社区 AI 相关文章和资料的知识库,比如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传栏目所有文章内容,陆续将社区其他板块文章和资料导入。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回内容结合回答。 另外,全程白嫖拥有一个 AI 大模型的微信助手的搭建步骤如下: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并获取白嫖大模型接口的方法。 2. 搭建,这是个知识库问答系统,放入知识文件,接入上面的大模型作为分析知识库的大脑来回答问题。若不想接入微信,搭建到此即可使用,它有问答界面。 3. 搭建,其中的 cow 插件能进行文件总结、MJ 绘画。
2025-02-19
AI 视频软件
以下是一些 AI 视频相关的软件和方法: 视频工具建议: 方法 0:guahunyo 老师做了个工作流,使用 comfy 工作流,参考 方法 0【Dreamina 深度图出图+出视频】:使用 Dreamina 图片生成功能 https://dreamina.jianying.com/aitool/image/generate ,上传深度图,选择适应画布比例,填写描述 方法 1【MJ 出图+AI 视频软件】:方法作者为迦/小龙问路,使用 Midjourney 垫图➕描述出图,再去视频工具中转成视频。可下载项里的深度图,打开 Midjourney 官网 https://www.midjourney.com/ ,局部重绘有难度,最终方式可分开画,先画个被关着的红衣服女孩,再画个二战德国士兵的背影,再合成后丢给 MJ 方法 2【Dall E3 出图+AI 视频软件】:使用 Dall E 直接描述出图,再去视频工具中转成视频 视频模型:Sora,参考 https://waytoagi.feishu.cn/wiki/S5zGwt5JHiezbgk5YGic0408nBc 工具教程:Hedra,参考 https://waytoagi.feishu.cn/wiki/PvBwwvN36iFob7kqZktcCzZFnxd 应用教程: 视频转绘,参考 https://waytoagi.feishu.cn/wiki/ZjKpwSd5hiy6ZhkiBVHcOBb6n9r 视频拆解,参考 https://waytoagi.feishu.cn/wiki/WeKMwHRTmiVpYjkVdYpcFjqun6b 图片精修,参考 https://waytoagi.feishu.cn/wiki/CfJLwknV1i8nyRkPaArcslWrnle 几个视频 AIGC 工具: Opusclip 可利用长视频剪成短视频 Raskai 可将短视频素材直接翻译至多语种 invideoAI 输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频 descript 屏幕/播客录制>PPT 方式做视频 veed.io 可自动翻译自动字幕 clipchamp 是微软的 AI 版剪映 typeframes 类似 invideoAI,内容呈现文本主体比重更多 google vids
2025-02-21
AI生图哪个软件好用
目前市面上有不少好用的 AI 生图软件,以下为您列举一些常见的: 1. DALL·E2:由 OpenAI 开发,能够根据输入的文本描述生成逼真的图像。 2. StableDiffusion:具有强大的生成能力和丰富的自定义选项。 3. Midjourney:生成的图像富有创意和艺术感。 不同的软件在功能、生成效果和使用难度上可能有所差异,您可以根据自己的需求和偏好进行选择。
2025-02-21
文字生成视频软件
以下是一些文字生成视频的软件: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,支持视频编辑,目前内测免费,生成服务托管在 discord 中。 功能:直接发送指令或上传图片生成 3 秒动态视频。 操作:加入 Pika Labs 的 Discord 频道,在“generate”子区输入指令生成,也可上传本地图片生成对应指令动态效果。对生成效果不满意可再次生成。 2. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频,是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 此外,还有 Viggle 这款工具,其核心技术基于 JST1 模型,是首个具有实际物理理解能力的视频3D 基础模型。功能包括可控制的视频生成、基于物理的动画、3D 角色和场景创建等。更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。内容由 AI 大模型生成,请仔细甄别。
2025-02-21
传统软件行业融合AI的商业模式
传统软件行业融合 AI 的商业模式具有多种可能性和变革方向: 1. “AI 原生”模式:基于 AI 的能力再造商业模式,而非套用现有流程。 2. To AI 的商业模式:包括模型市场、合成数据、模型工程平台、模型安全等方面。 3. 基于国产芯片的软硬件联合优化,固件生态存在明确机会。 4. 端上智能有望成为全天候硬件 24x7 收集数据,具有较大想象空间。 5. 对于 SaaS 生态的影响: 认知架构带来巨大工程挑战,将模型基础能力转化为成熟可靠的端到端解决方案可能比想象中复杂。 可能引发业务模式全面变革,如从工程、产品和设计部门的瀑布式开发转变为敏捷开发和 A/B 测试,市场策略从自上而下的企业销售转向自下而上的产品驱动增长,商业模式从高价格销售转向基于使用的定价模式。 知名投资机构 Nfx 分析指出,AI 正在强制逆转 SaaS 从“软件即服务”转变为“服务即软件”,软件既能组织任务也能执行任务,传统劳动力市场最终将和软件融合成为新市场。降低企业在知识工作者上的支出,提高在软件市场的支出。企业组织中提供 AI 劳动力的产品有“AI 同事(雇佣)”等形式。
2025-02-21
适合图像设计海报的ai软件
以下是一些适合图像设计海报的 AI 软件: 1. Canva(可画):https://www.canva.cn/ 这是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户通过简单拖放操作即可创建海报,其 AI 功能可帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 这是一个简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子和其他视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,大大简化设计流程。 此外,还有以下相关信息: 可画软件优势:提供多种排版模板和 AI 功能,方便图片处理和尺寸调整,如将海报尺寸调为 1080 乘 1440。 吉梦智能画板:具有消除、图层、一键抠图等功能,抠图效果较好。 无界 AI:网址 https://www.wujieai.cc/ 做图逻辑类似于 SD,优势在于国内网络即可稳定使用,有免费出图点数,支持中文关键词输入,无需额外下载风格模型,可直接取用。 在制作海报时,需注意海报制作要点,如创意好、有氛围、突出产品特性即可,不必刻意追求复杂效果和为难自己。同时,要注意字体软件的使用,如推荐的 IAIFONT、自由等字体软件,使用时要注意免费字体和避免版权问题。
2025-02-21
免费生成音乐的ai 软件
以下是一些免费生成音乐的 AI 软件: :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予您新的创作和表达方式。 :使用 AI 改变您的歌唱声音。 :为您的创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 :带有 AI 助手并支持本地 VST 插件的网页 DAW。 :Audacity®音频编辑器的网页版。 此外,Riffusion 推出了 FUZZ 这一全新音乐生成模型,基于扩散模型,支持永久免费开放(只要服务器能撑住)。FUZZ 通过生成声谱图(Spectrogram)并转换为音频,可输入提示词(音乐类型、乐器、情绪等)生成风格匹配的音乐,支持无缝风格过渡,如从“爵士小号独奏”平滑切换到“电子舞曲节奏”。
2025-02-20
推荐些AI文章
以下是为您推荐的一些 AI 文章: 1. 《新手如何学习 AI?》 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支及联系。 浏览入门文章,了解历史、应用和发展趋势。 开始 AI 学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如图像、音乐、视频等,并掌握提示词技巧。 实践和尝试:理论学习后通过实践巩固知识,使用各种产品创作,知识库有实践作品和文章分享。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 2. 《01通往 AGI 之路知识库使用指南》 包括关于 AI 知识库使用及 AIPO 活动的介绍,AIPO 线下活动及 AI 相关探讨,way to AGI 社区活动与知识库介绍,AI 知识库及学习路径的介绍,时代杂志评选的领军人物,AI 相关名词解释,知识库的信息来源,社区共创项目,学习路径,经典必读文章,初学者入门推荐,历史脉络类资料等内容。 3. 《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》 作者 Allen 旨在帮助入门同学建立框架,推荐了两个有重大帮助的视频: 由」,50 分钟速通 AI 大模型原理。 某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频「」,一共两期,内容都值得观看。
2025-02-21
如果想用AI创作表情包,推荐用什么AI大模型
如果您想用 AI 创作表情包,以下是一些推荐的 AI 大模型及相关平台: 1. MewXAI:这是一款操作简单的 AI 绘画创作平台。其功能包括 MX 绘画,拥有众多超火模型和上百种风格,支持文生图、图生图;MX Cute 是自研的可爱风动漫大模型;MJ 绘画在表情包制作等方面表现出色;还有边缘检测、室内设计、姿态检测、AI 艺术二维码、AI 艺术字等多种功能。访问地址:https://www.mewxai.cn/ 2. 在开发 AI Share Card 插件的过程中,选用的是 GLM4flash 模型。它具有较长的上下文窗口、响应速度快、并发支持高、免费或价格较低等优点。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-21
能够帮助大学老师提高工作效率的AI工具有哪些?请为我推荐10个APP
以下为您推荐 10 个能够帮助大学老师提高工作效率的 AI 工具 APP: 1. WPS 文档翻译功能:这是 WPS 的一项功能,利用自然语言处理技术,可快速翻译办公文档,提高工作效率。 2. 美丽修行 APP:通过数据分析和自然语言处理技术,根据用户肤质推荐适合的美容护肤产品。 3. 360 儿童手表:利用图像识别和机器学习技术,实现定位、通话、安全区域设置等功能,保障儿童安全。 4. 汽车之家 APP:借助数据分析和机器学习技术,根据用户汽车型号、行驶里程等信息提醒车主及时进行汽车保养。 5. 豆果美食 APP:运用自然语言处理和数据分析技术,根据用户口味和现有食材生成个性化菜谱。 6. 沪江开心词场:采用自然语言处理和机器学习技术,辅助用户学习语言,提供个性化学习方案。 7. 爱奇艺智能推荐:利用数据分析和机器学习技术,根据用户喜好推荐电影。 8. WPS Office:借助自然语言处理和机器学习技术,提高办公效率,实现自动化办公流程。 9. Speak:是一个由 AI 驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。 10. Quazel:提供类似的语言学习帮助。 此外,还有 Lingostar、Photomath、Mathly、PeopleAI、Historical Figures、Grammarly、Orchard、Lex、Tome、Beautiful.ai 等工具在不同方面为学习和工作提供支持。
2025-02-21
推荐几个ai相关的优质公众号
以下是为您推荐的一些 AI 相关的优质公众号: 超时空视角 麦橘 麦乐园 MAILAND 𝐦𝐚𝐣𝐢𝐜𝐌𝐈𝐗 模型的作者 orange Web3 天空之城 Ragnar 瑞哥那 海辛 三思 INDIGO TALK 云中江树 陈财猫 阿文
2025-02-20
有没有推荐的关于AI话题的外网博主推荐
以下是为您推荐的一些关于 AI 话题的外网博主: :日本艺术家,最近在玩 suno :论文布道者 :AI 新闻布道者 :音乐创作者 :开发商+艺术爱好者 :沃顿教授 :AI 新闻布道者 :runway 官号 :英伟达机器学习工程师 :AI 新闻布道者 :创意总监和非官方 MJ 托儿 :AI 教育布道者 :Pika 官号 :AI 新闻布道者 :AI 艺术家 :AI 艺术家 :AI 新闻布道者日本 :创始人 :(AI 工具) :FutureTools.io 创始人 :Lore.com 创始人(AI 艺术中介) :AI 布道者,知名画图 GPTs 创始人 :AI 艺术家 :a16z 合伙人 @Riabovitchev:电影概念艺术家 :AI 新闻布道者视频博主
2025-02-20
最好的ai视频生成工具推荐
以下是为您推荐的一些优秀的 AI 视频生成工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作且支持视频编辑。 2. SVD:Stable Diffusion 的插件,可在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 6. PixVerse:多模态输入,支持文本到视频和图像到视频转换,提供多种风格选项,可精细化控制生成内容,有社区支持,生成效率高,提供视频上采样功能,但 Web 应用和 Discord 服务器生成的视频质量有差异,使用时仍需准确的文本描述。 7. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架。 8. Pictory:允许用户轻松创建和编辑高质量视频,可根据文本描述生成相应内容。 9. VEED.IO:提供 AI 图像和脚本生成器,帮助用户从图像制作视频并规划内容。 10. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 这些工具适用于不同的应用场景和需求,您可以根据自身情况进行选择。更多的文生视频网站可查看:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-20
实现基于个人聊天记录的数字分身的最佳实践
实现基于个人聊天记录的数字分身的最佳实践包括以下方面: 虚拟数字人的类型和驱动方式: 虚拟数字人通过各种技术创造,具有外观、行为和思想等人类特征,呈现为虚拟形象。 从驱动层面可分为中之人驱动和 AI 驱动两类。中之人驱动运用动作捕捉和面部捕捉技术实现交互,有上限且缺乏高并发和量产化能力;AI 驱动使用 AI 技术创建、驱动和生成内容,赋予感知和表达等交互能力。 虚拟数字人的应用类型: 服务型:如虚拟主播、助手、教师、客服和医生等,为物理世界提供服务。 表演型:如虚拟偶像,用于娱乐、影视等场景。 身份型:是物理世界“真人”进入虚拟世界的数字分身,在元宇宙中有广泛应用场景。 相关开源项目: 熊猫大侠基于 COW 框架的 ChatBot 最新版本支持多端部署、基础对话、语音识别、图片生成、丰富插件、Tool 工具和知识库等功能。可接入个人微信、微信公众号、企业微信应用,支持多种模型和个性化插件扩展,通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用。项目地址包括 Github:https://github.com/zhayujie/chatgptonwechat ,Gitee:https://gitee.com/zhayujie/chatgptonwechat 。
2025-02-20
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
搭建个人知识库的具体操作是什么?
搭建个人知识库的具体操作如下: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载不同类型的文档。 文本分割器把文档切分为指定大小的块。 存储涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 通过检索算法找到与输入问题相似的嵌入片。 把问题以及检索出来的嵌入片一起提交给 LLM 生成答案。 2. 本地知识库进阶: 若要更灵活掌控知识库,需使用 AnythingLLM 软件,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离。 操作包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 3. 使用 embeddings: 将文本转换成向量能节省空间,可理解为索引。 把大文本拆分成小文本块,通过 embeddings API 转换成向量,在向量储存库保存向量和文本块作为知识库。 用户提问时,问题先转成向量,与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。 例如,对于“此文作者是谁?”的问题,通过比较向量可找到关联度高的文本块。
2025-02-13
我想用deepseek 写微信公众号文章,我将要写的主题告诉他,让它为我生成个人角度的文章,我要写的主题一般围绕着软件分享,技术分享等。请你根据我的要求为我写一份适用的提示词
以下是为您生成的适用于使用 DeepSeek 写微信公众号文章的提示词: 我要写一篇关于软件分享或技术分享的微信公众号文章,文章标题要足够吸引人,以便能广泛传播。文章内容要详细且有条理,先介绍分享的软件或技术的基本情况,包括其功能、特点和优势;然后结合实际案例或个人使用体验,阐述其在实际应用中的效果和价值;最后总结并展望其未来的发展前景。请为我生成这样一篇完整的文章。
2025-02-12
个人知识库
以下是关于个人知识库的相关内容: 使用 GPT 打造个人知识库: 将文本拆分成小文本块(chunk),通过 embeddings API 转换成 embeddings 向量,在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,问题先转换成问题向量,与向量储存库中的文本块向量比对,提取关联度高的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如对于“此文作者是谁?”的问题,可根据向量关联度提取相关文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。” 理解 embeddings: embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 向量是数学中表示大小和方向的量,通常用一串数字表示,在计算机科学和数据科学中常用列表表示。 向量之间的距离有多种计算方式,常见的是欧几里得距离。 在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。 手把手教你本地部署大模型以及搭建个人知识库: 思路来源于视频号博主黄益贺。 作者按照视频进行实操并附加了关于 RAG 的额外知识。 读完本文可学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 的信息流转、RAG 的概念及核心技术、通过 AnythingLLM 搭建本地化数据库等。
2025-02-12