Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

哪些开源大模型,对商业化友好,有哪些限制?

Answer

目前有几个相对友好的开源大模型可供商业使用,但都有一定的限制:

  1. BloombergAI 模型 (BLOOM)
  • 采用了 Apache 2.0 许可证,对商业使用比较友好
  • 但需遵守许可条款,如源代码修改时需公开
  1. OPT 模型(由 Meta 开源)
  • 采用了 MIT 许可证,可自由用于商业用途
  • 但模型规模相对较小(175B 参数)
  1. GPT-NeoX-20B 模型(由 EleutherAI 开源)
  • 使用 Apache 2.0 许可证
  • 规模较大(20B 参数),但仍远小于 GPT-3
  1. LLaMa 模型(Meta 开源)
  • 采用了较为宽松的模型证书
  • 支持商业使用,但有一些限制(如不得用于云服务)

总的来说,这些开源大模型给予了一定程度的自由使用权,但还是有版权、规模、应用场景等各方面的限制。对于大规模商业化应用,开源模型的能力和灵活性可能仍有不足。企业需根据自身需求,权衡利弊做出选择。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
我需要的是开源工具,来完成创作流程
以下是一些开源工具可用于完成创作流程: 在图文内容生产方面,有选题生成、文案创作、智能配图和智能发布等定制化服务。 设计了一套覆盖从构思到完稿整个创作流程的提示词工具,并为学员打造了创作的标准操作流程(SOP)。 小财鼠程序版 agent ,但尚未正式对外发布。 在 AI 视频创作方面: 剧本生成:不同模型生成的剧本在对白、人物动作、场景等方面有差异,如 cloud 效果较好但需付费和一定网络门槛。 分镜脚本:利用分镜大师提示词生成分镜脚本,每次让模型处理 3 5 个分镜。 提示词生成:将分镜粘贴生成图像和视频提示词,不同模型生成效果有差异。 图像生成工具:如 Flex 模型生成质量高,有 Control Net 功能;谷歌 Image FX 提示词理解能力强;记梦对中文处理到位等。 提示词辅助工具:通义望向可智能扩写生成详细提示词;堆有能根据上传图片反推提示词;季梦可根据主题生成多种风格提示词。 图像优化:用 MJ 做局部重绘,用 ComfyUI 做高清放大。 视频生成:可灵的图生视频功能效果质量高且稳定但贵和慢;Pika 最新上线的 2.2 版本在首尾帧过渡上有不错表现;追求效率可尝试 Pixverse ,还有即梦、vidu、海螺、通义万相、智谱清言等平台。 后期制作:将生成的视频素材丢进剪映进行剪辑、添加音效、字幕和转场特效。
2025-03-18
哪里可以找到开源的ai agent
以下是一些可以找到开源 AI Agent 的途径和相关信息: AutoGPT 和 BabyAGI 是最早实现让 LLM 自己做自动化多步骤推理的开源智能代理,在去年 GPT4 刚发布时风靡全球科技圈。 智谱·AI 开源了一些包含 Agent 能力的模型,如 AgentLM7B、AgentLM13B、AgentLM70B 等,相关信息和代码链接可在相应的平台获取。 Andrej 的 LLM OS 中包含了相关模块。 OpenAI 的研究主管 Lilian Weng 曾写过一篇博客《LLM Powered Autonomous Agents》介绍了 Agent 的设计框架。
2025-03-13
最近一个月有哪些令人惊艳的开源大模型
以下是最近一个月令人惊艳的开源大模型: 1. 三月初,Meta 的 LLaMA 泄露给公众,随后社区出现一系列创新,包括指令调整、量化、质量改进、人类评估、多模态、RLHF 等变体,解决了扩展问题,降低了培训和实验的准入门槛。 2. 1 月 20 日,DeepSeek 宣布开源 R1 模型,将大模型行业推进到推理时代,引发了深刻影响。 3. 2024 年 5 月: 谷歌在 Google Cloud Next 2024 上发布一系列生成式 AI 产品和服务。 OpenAI 发布 GPT4 Turbo 模型,并开源评估框架 simpleevals。 xAI 发布首个多模态模型 Grok1.5V 的预览版。 微软 WizardLM 团队发布 WizardLM2,后紧急撤回进行毒性测试。 Mistral AI 开源 Mistral 8x22B 模型。 Meta 发布拥有 4000 亿参数的开源大模型 Llama 3。
2025-03-10
会议语音识别并转为总结,思维导图。有什么开源项目模型支持?
以下是一些支持会议语音识别并转为总结、思维导图的开源项目: 1. 熊猫大侠: 基于 COW 框架的 ChatBot 实现。 支持多端部署,可接入个人微信、微信公众号、企业微信应用。 具备基础对话功能,支持私聊及群聊的消息智能回复,多轮会话上下文记忆,支持 GPT3、GPT3.5、GPT4、文心一言模型。 支持语音识别,可识别语音消息,通过文字或语音回复,支持 azure、baidu、google、openai 等多种语音模型。 支持图片生成和图生图,可选择 DellE、stable diffusion、replicate、Midjourney 模型。 拥有丰富插件,支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结等插件。 Tool 工具能与操作系统和互联网交互,支持最新信息搜索、数学计算、天气和资讯查询、网页总结,基于实现。 可通过上传知识库文件自定义专属机器人,作为数字分身、领域知识库、智能客服使用,基于 LinkAI 实现。 项目地址 项目地址 2. 阿里云百炼大模型平台: 具备对话分析能力,可根据对话内容生成标题和质检项等,结果以 JSON 结构呈现。 支持 API 调用,为实现企业级应用融合,可接入 API 将应用包装到工作流程链路中,满足企业数据安全隔离等需求。 支持图像生成,可通过 Flux 模型等生成图像,设置参数如正向提示词、负面提示词等。 支持文本生成,能生成小红书风格文案、朋友圈文案等各种营销文案,还能结合多模态模型创作歌曲。 拥有语音模型,包括语音合成和识别,可选择多种角色和自定义内容,对通用文字识别准确,对专有名词可微调识别。 支持视频处理,如影视传媒理解,能提取视频信息、分析爆点、生成字幕和思维导图等。 支持工作流串联,实时语音识别后可生成会议纪要,实现企业级应用中的工作流串联。 支持智能体应用的搭建与发布,工作流应用由多个节点组成,包括大模型节点、知识库节点、API 节点等,可实现意图分类和商品导购,还能进行文本转换兜底。 智能体应用创建有多种应用模板,可添加知识库,如客服话术知识库,能通过提示词和知识库数据进行智能客服问答。 支持多模态交互,包括语音交互和视频交互,语音交互可配置是否智能打断,视频交互需使用 VO 模型。 发布渠道有官方应用、钉钉机器人、微信公众号等,还有低代码开发平台,可快速创建 Web 应用。
2025-03-07
使用llm的爬虫工具推荐下,开源免费
以下是为您推荐的开源免费的使用 LLM 的爬虫工具: 1. Jina 开源的网页内容爬取工具:Reader API 能从网址提取出核心内容,并将其转化为干净、易于大语言模型处理的文本,确保为您的 AI 智能体及 RAG 系统提供高品质的数据输入。 2. Scrapy 库(Python 语言):在 crawlab 可以做到分布式爬取,非常高效。 3. GPT Crawler:主要运用 typescript 进行数据爬取。 4. 在开源的项目中,为实现对含有 JavaScript 内容的网页抓取,不使用 Python 自己的 request 库,而是使用 playwright 之类的浏览器,并将网页内容按照一定规则转化成 markdown 格式,方便 LLM 后续的理解和抓取。 同时,对于爬虫工具的选择,还需根据您的具体需求和技术熟悉程度来决定。
2025-03-06
你作为AI开源项目的专家,请解释下如何来做一个AI开源项目
要做一个 AI 开源项目,以下是一些关键步骤和要点: 1. 明确项目目标和范围:确定您的 AI 开源项目要解决的具体问题和应用场景,以及项目的边界和功能。 2. 制定.cursorrules: 说明自己的身份和期望的技能:告诉 AI 您希望它具备的专业水准和技能。 明确项目任务:清晰地告知 AI 项目的具体目标和要求。 设定项目规则:包括代码规范、风格等,以保证代码的一致性和可维护性。 规划文件存放位置:便于代码的组织和查找。 指定使用的工具:如框架和库,确保项目的整洁和统一。 说明测试要求:让 AI 生成的代码具有可测试性,并主动编写测试用例。 提供参考资料:帮助 AI 基于最佳实践进行开发。 如有 UI 需求,明确相关要求。 3. 选择合适的技术和框架:例如 Fooocus 这样的图像生成开源项目,它内置多种风格,适合小白上手,且具有离线、开源、免费等特点,支持在多种操作系统上使用,并借鉴了稳定扩散和 Midjourney 的设计思想。 4. 考虑开源的角色和影响:从长远来看,开源模型的情况会变得复杂。对于具有高度能力的模型,如能够自主创办和建立大型科技公司或进行科学研究的模型,其是否开源会产生难以预测的后果。 总之,创建一个 AI 开源项目需要综合考虑多方面的因素,包括技术选型、规则制定、目标明确等,以确保项目的成功和可持续发展。
2025-03-06
知识库的商业化应用场景有哪些
知识库的商业化应用场景主要包括以下几个方面: 1. 生物医药领域: 医药企业研发立项:回答关于作用机制、目标治疗疾病的竞争格局、主流技术路径、同技术路径其他公司产品在临床试验阶段的安全性风险和有效性等问题。 科研机构临床转化评估:回答关于科学家研究方向的临床转化潜力等问题。 投资机构评估标的公司:回答关于国外对标技术的发展情况、融资情况、临床转化的可靠性等问题。 2. 其他工作场景: 可以替代大部分传统医药数据库的商业化场景。 在一般的工作场景中,通过提示词设定角色和技能,结合知识库,让大语言模型能够按照需求做出准确回复。例如设定角色为“美嘉”,知识库为《爱情公寓》全季剧情,能够回答相关问题。 此外,在知识库的检索原理方面: 1. 文本预处理:包括去除无关字符、标准化文本、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本转换为向量,通常通过使用预训练的嵌入模型完成。 3. 特征提取:对于整个问题句子,应用进一步的特征提取技术,如句子级别的嵌入,或使用深度学习模型直接提取整个句子的表示。 4. 向量优化:在某些情况下,问题的向量表示可能会根据具体任务进行优化。 5. 知识库检索阶段:在大模型的检索中,依靠问题在空间中的向量位置,寻找距离这个向量最近的其他词句完成检索,知识库被转化成巨大的向量库。
2025-02-28
ai 语音,ai语音,ai 文转语音,有哪些成功的商业化落地项目吗
以下是一些成功的 AI 语音商业化落地项目: 语音合成(TTS)方面: :为所有人提供开放的语音技术。 :基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 :基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 :使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 :为出版商和创作者开发最具吸引力的 AI 语音软件。 :使用户能够使用文本转语音技术生成播客。 :基于生成机器学习模型构建内容创作的未来。 :从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 :演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。 :将书面内容转化为引人入胜的音频,并实现无缝分发。 :专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 语音转录方面: :为聋人和重听者提供专业和基于 AI 的字幕(转录和说话人识别)。 :专业的基于 AI 的转录和字幕。 :混合团队高效协作会议所需的一切。 :音频转录软件 从语音到文本到魔法。 :99%准确的字幕、转录和字幕服务。 :为语音不标准的人群提供的应用程序。 :通过 AI 语音识别实现更快速、更准确的语音应用。 :会议的 AI 助手。 :让孩子们的声音被听见的语音技术。 :使用语音识别自动将音频和视频转换为文本和字幕的 SaaS 解决方案。 :实时字幕记录面对面小组会议中的发言内容。 :理解每个声音的自主语音识别技术。 :支持 35 多种语言的自动转录。 :端到端的边缘语音 AI,设备上的语音识别。
2024-11-19
你是一名医疗器械销售,就职于一家跨国医疗企业。公司目前就“我们是否应该立刻全面拥抱人工智能技术”组织了一场辩论赛,你持反方论点,即“我们不应该立刻全面拥抱人工智能技术”。 请你结合社会时事热点,设计5个以上刁钻问题给对方,要求举出实例。 此次辩论赛的听众中有公司高层和全体同事,请注意避免不友好及不利于公司形象的言论。
以下是为您设计的一些刁钻问题: 1. 目前人工智能在医疗领域的误诊案例时有发生,比如某些智能诊断系统对复杂病症的判断失误,导致患者延误治疗,这难道还能让我们立刻全面拥抱它吗? 2. 人工智能技术在医疗数据安全方面存在诸多隐患,像近期发生的多起医疗数据泄露事件,给患者带来极大困扰,在这种情况下,怎么能立刻全面拥抱? 3. 人工智能在医疗器械的研发中,由于算法偏见,可能会导致某些特定人群无法受益,例如某些心脏起搏器的智能调控系统对特定体质患者效果不佳,这能说明应该立刻全面拥抱吗? 4. 当下人工智能技术的高昂成本使得许多医疗机构望而却步,比如一些小型医院根本无力承担智能医疗设备的购置和维护费用,这难道不影响全面拥抱的可行性吗? 5. 人工智能在医疗领域的法规和监管还不完善,比如某些智能手术机器人的操作规范尚未明确,一旦出现问题,责任难以界定,这样能立刻全面拥抱吗? 6. 虽然人工智能在某些方面提高了医疗效率,但也导致了部分医疗人员的失业,引发社会就业问题,这难道不是我们需要谨慎对待、不能立刻全面拥抱的原因吗?
2024-12-01
你是一名医疗器械销售,就职于一家跨国医疗企业。公司目前就“我们是否应该立刻全面拥抱人工智能技术”组织了一场辩论赛,你持反方论点,即“我们不应该立刻全面拥抱人工智能技术”。 请你结合社会时事热点,设计5个以上刁钻问题给对方。 此次辩论赛的听众中有公司高层和全体同事,请注意避免不友好及不利于公司形象的言论。
以下是为您设计的一些刁钻问题: 1. 当下人工智能技术在医疗领域的应用仍存在诸多伦理和法律争议,比如医疗数据的隐私保护问题尚未得到妥善解决,在这种情况下,如何能立刻全面拥抱? 2. 人工智能技术在医疗器械的诊断中可能会出现误判,而医疗事故往往关乎生命,如何确保在立刻全面拥抱的情况下避免这些严重后果? 3. 目前人工智能技术的发展还不够稳定,时常面临技术更新和升级的问题,这会导致医疗器械的频繁变动和成本增加,这一现实如何应对? 4. 社会时事热点中不乏人工智能技术被滥用的案例,比如虚假医疗信息的传播,如何保证在立刻全面拥抱人工智能技术时不出现此类问题? 5. 人工智能技术的广泛应用可能会导致部分医疗工作者失业,引发社会就业结构的不稳定,这一风险如何化解? 6. 近期有报道指出人工智能技术存在被黑客攻击的风险,从而威胁患者的医疗信息安全,在这种情况下立刻全面拥抱是否明智? 7. 人工智能技术在医疗器械中的应用需要大量的资金投入,而目前公司的财务状况是否能够支撑立刻全面的投入和应用? 8. 社会时事热点中,一些人工智能技术的应用缺乏人性化关怀,在医疗这种关乎人性和情感的领域,立刻全面拥抱是否合适?
2024-12-01
你是一名医疗器械销售,就职于一家跨国医疗企业。公司目前就“我们是否应该立刻全面拥抱人工智能技术”组织了一场辩论赛,你持反方论点,即“我们不应该立刻全面拥抱人工智能技术”。 请预想对方辩友可能会提出的5条以上反对意见,并给出对应答复。 此次辩论赛的听众中有公司高层和全体同事,请注意避免不友好及不利于公司形象的言论。
对方辩友可能提出的反对意见及我方答复如下: 反对意见 1:人工智能技术能够提高医疗器械的研发效率和精准度。 答复:虽然人工智能在某些方面可能有助于研发,但目前技术尚不成熟,存在误差风险。而且过度依赖可能导致研发人员忽视传统方法中的重要经验和细节。 反对意见 2:人工智能可以优化医疗器械的生产流程,降低成本。 答复:短期内,引入人工智能进行生产流程优化可能需要大量的资金投入用于技术改造和人员培训,成本未必能立刻降低。 反对意见 3:人工智能能够实现更精准的医疗诊断,提升医疗效果。 答复:诊断不仅仅依赖技术,还需要医生的综合判断和人文关怀。目前人工智能诊断存在误判的可能性,不能完全替代医生的经验和直觉。 反对意见 4:人工智能有助于医疗数据的管理和分析,为决策提供有力支持。 答复:数据的安全性和隐私性在人工智能应用中是重大挑战,一旦数据泄露,将对患者和公司造成严重影响。 反对意见 5:人工智能是未来医疗行业的趋势,不立刻全面拥抱会使公司落后于竞争对手。 答复:趋势并不意味着要立刻全面投入,盲目跟风可能导致资源浪费和战略失误。我们应在充分评估风险和自身实际情况的基础上,逐步、稳健地引入人工智能技术。 反对意见 6:人工智能能够提供个性化的医疗服务,满足患者多样化需求。 答复:个性化服务的实现需要大量准确的数据支持,而目前数据的质量和完整性难以保证,可能导致服务效果不佳。
2024-12-01
国内大模型对产品经理友好的工具
以下是一些对产品经理友好的国内大模型工具: 免费的 APP 有:Kimi 智能助手(Moonshot AI 出品,能一口气读完二十万字小说、上网冲浪)、文心一言(百度出品,定位为智能伙伴,能写文案、想点子、陪聊天、答疑解惑)、通义千问(阿里云开发,能与人交互、回答问题及协作创作)。 8 月正式上线的有: 北京的:百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ 。 上海的:商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 。 其中,在聊天状态下能生成 Markdown 格式的有:智谱清言、商量 Sensechat、MiniMax 。目前不能进行自然语言交流的有:昇思(可检测文本是否由 AI 生成,类似论文查重,准确度不错)、书生。受限制使用的有:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值)。具有特色功能的有:昇思——生图,MiniMax——语音合成。 另外,关于提示词相关的问题: 上课用的大模型工具可自行准备,推荐顺序为:chatGPT 4.0、kimichat、智谱清言。 文本纠错方面,如果是工具,飞书文档带有纠错功能;如果用 prompt 纠错,文本量不能太大,直接告诉大模型:检查下列文本中的错别字、语法错误和格式错误,指出并改正,重新生成新的文本。 用文心一言 APP 是可以的。 国产大模型中,智谱和文心可以文生图。 需要注意的是,对于绘画相关问题超纲了。关于长期学习使用是否需要特定手机或显卡以及 ChatGPT 交费问题,没有明确的相关内容。
2024-10-11
有哪些国外免费的大模型API可以使用
以下是一些国外免费的大模型 API 可供使用: 1. 谷歌的 Gemini 大模型(https://ai.google.dev/)(gemini 1.5),但使用可能需要给服务器挂梯子。 2. 海外版 Coze(https://www.coze.com/)的 GPT4 模型,能图片识别,使用可能需要给服务器挂梯子。 此外,还有以下相关信息: 1. 阿里的通义千问大模型接口(https://dashscope.console.aliyun.com/),创建 API key 即可使用。 2. 智谱 AI(ChatGLM)(https://open.bigmodel.cn/)、科大讯飞(SparkDesk)(https://xinghuo.xfyun.cn/sparkapi)也有免费接口,但国内的大模型大多限制一定免费额度的 Token。 对于 OpenRouter 新发布的功能 BYOK(Bring Your Own API Keys),它是个第三方 Key 集成功能,将 xAI、OpenAI、Mistral 等数十个平台的 Key 集中在一起,目前支持白“赚”的平台包括 AI Studio/Cohere/DeepSeek/Mistral/SambaNova/Together/xAI 等。 以 silicon 为例,其有众多开源模型(Yi、Qwen、Llama、Gemma 等)免费使用,另赠送 14 元体验金,有效期未知,是个人认为 API 接口方便实惠的选择。注册和使用地址为:,邀请码:ESTKPm3J。注册登录后,单击左边栏的 API 密钥,单击新建 API 密钥,单击密钥即可完成 API 密钥的复制。
2025-03-19
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
使用模型 对页面性能分析,内存泄露分析的 提示词
以下是为您整理的相关内容: 1. 对于模型回答 9.9<9.11 的原因分析,涉及到模型的操作方式。如选择自定义提示词或预定义话题,输入对话内容等待生成,根据情况切换按钮等。归因聚类使用大模型,有反应时间,结果可能因模型使用的温度不同而不同。LLM 采用多头注意力机制预测下一个 token,训练数据中相关语句越多,相关性概率越高。 2. 关于 ollama 提示词优化模型副本: 新建环境变量,C 盘储存小的需先操作,ollama 默认的模型保存路径为 Windows:C:\\Users\\%username%\\.ollama\\models,需添加 OLLAMA_MODELS 环境变量。 进入 ollama 官网下载,地址:https://ollama.com/ ,可下载语言模型和图像模型,选择相应模型下载至本地,选择本地文件夹 CMD 后粘贴命令开始下载。 在 Comfy 中使用,包括下载并安装 ollama 节点,在 Comfy 中调用。 效果方面,llama 模型进行提示词生成,llava 模型进行图像反推较为准确。 工作流相关的节点和工作流下载地址:https://www.123pan.com/s/fOu4Tdnrjdd.html 提取码:kaka 。 3. Midjourney 提示词生成器:仿照 GPTs 里的 MJ prompt 改了一版提示词,可用于 coze 或其他国内的 agent 里。不挑模型,方便补全润色。并给出了一些测试画面的示例,如巨大鲸鱼头部特写、乌克兰女孩黑白写真照、大型交响乐团演奏等的提示词。推理模型可能提升提示词的精准性,准备测试。
2025-03-19
阅读大量特定网页并提取信息的大模型推荐
以下为您推荐几款能够阅读大量特定网页并提取信息的大模型: 1. 一款 AI 浏览器插件: 其 idea 来自早先挖的坑,在词生卡刚火时,想进一步发挥大模型对话产品的能力,做一个真正的提示词智能体。 目标是输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。 为达到这一效果,大模型对话产品需完成关键步骤:自行访问链接并解析网页内容、根据提示词要求提炼标题等信息、利用 qrcode.js 库生成二维码图片、基于特定模板设计要求生成卡片样式。 编写的「网页分享卡片生成」词生卡 Prompt 有新的组织方法,把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”等独立模块,并结合“内容结构”进行要求提示。这种方式具有模型通用性、提示简易性和生成稳定性的优势。 2. 本地部署资讯问答机器人: 导入依赖库,包括 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,其具有支持多语言等特点。从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 3. 伊登: 工作流程包括内容获取,只需输入新闻链接,系统就能自动提取核心内容。 开始节点输入新闻链接和视频合成插件 api_key,添加网页图片链接提取插件获取图片,使用链接读取节点提取文字内容,利用大模型节点重写新闻成为口播稿子,可使用 DeepseekR1 模型生成有吸引力的口播内容。
2025-03-18
我想在飞书云中用DeepSeek-R1模型提取链接中的信息,请问如何写指令呢?我刚刚进行了尝试,发现提取出的信息和我点开链接看到的信息不一致,这个问题又该如何解决呢?
在飞书云中使用 DeepSeekR1 模型提取链接中的信息并解决提取信息不一致的问题,您可以参考以下内容: 对于指令编写: 虽然 R1 推理能力较强,但您想表达的不一定完全与模型吻合,因此建议多加清晰指令。 模糊指令优化方面,比如对于宽泛需求可添加维度约束,如原句“写小说”可修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;对于主观表述可量化标准,如原句“写得专业些”可修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法包括首轮生成获取基础内容、特征强化(如加强第三段的技术细节描述)、风格调整(如改用学术会议报告语气,添加结论部分)、最终校验(检查时间逻辑一致性,列出可能的事实性错误)。 对于提取信息不一致的问题: 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 格式偏离:使用严格遵循以下模板:第一行...第二行... 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 另外,关于获取字节火山 DeepSeek 系列 API 完整教程及使用方法: 1. 注册并登录火山引擎,点击立即体验进入控制台。 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。 4. 若有提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议一路开通(免费)。 5. 确认无误后,点击“确认接入”按钮。 6. 自动返回创建页面,复制多出的接入点名为“DeepSeekR1”的推理点 ID 并保存。 7. 点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 若已有 API key 直接查看并复制,没有则点击【创建 API key】。 9. 复制并保存好 API key。 在实现新闻播报自动化工作流方面: 第一步是内容获取,输入新闻链接,系统自动提取核心内容。开始节点的入参包括新闻链接和视频合成插件 api_key。添加网页图片链接提取插件,获取网页里的图片。接着利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。然后使用链接读取节点,将文字内容提取出来。在提取链接后面接上一个大模型节点,用 DeepSeekR1 模型生成有吸引力的口播内容。若想加上自己的特征,可在提示词里写“开头加上‘这里是伊登 AI’之类的个性化台词防伪”。
2025-03-18
多模态达模型排行
以下是一些常见的多模态模型排行及相关信息: 1. 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能基础上具备 GUI 图像的 Agent 能力。代码链接:。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩第一,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 2. Gemini 模型:Gemini Ultra 在表 7 中的各种图像理解基准测试中都是最先进的,在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等各种任务中表现出强大的性能。在 zeroshot 评估中表现更好,超过了几个专门在基准训练集上进行微调的现有模型,适用于大多数任务。在 MMMU 基准测试中取得了最好的分数,比最先进的结果提高了 5 个百分点以上,并在 6 个学科中的 5 个学科中超过了以前的最佳结果。 3. 多模态思维链提示方法:Zhang 等人(2023)提出了一种多模态思维链提示方法,多模态 CoT 模型(1B)在 ScienceQA 基准测试中的表现优于 GPT3.5。
2025-03-18