Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何更好的使用知识库,我在知识库中增加了很多文档,但是反而感觉导致AI产生大量幻觉和混乱

Answer

以下是关于如何更好使用知识库以及 RAG 相关的知识:

  • RAG 技术是 AI 领域的重要技术,但存在一些常见误区:
    • 不能随意输入任何文档就期望得到准确回答,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,且有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等。
    • RAG 虽然能显著减少幻觉,但不能完全消除,只要有大模型参与,就可能产生幻觉。
    • RAG 仍消耗大模型的 Token,最终还是将知识库中检索的结果给到 LLM,由 LLM 进行重新整理输出。
  • 对于使用知识库的建议:
    • 知识库在不断更新,常来逛逛。
    • 遇到问题先搜索,搜不到就提问。
    • 好用的内容要收藏,方便下次查找。
    • 每个人都有自己的节奏,不要着急。
    • 一旦有了自己的方向和持续玩的 AI 角度,知识库中的大量高质量教程就是最好的助力。
    • 当成为高手并愿意分享时,为社区留下内容。
    • 开源知识库和社区的意义在于共建、共学、互相帮助。
    • 不要怕犯错,大胆尝试。
  • RAG(Retrieval-Augmented Generation)即检索增强生成,由检索器和生成器组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,能提供详细准确的回答。
Content generated by AI large model, please carefully verify (powered by aily)

References

胎教级教程:万字长文带你理解 RAG 全流程

RAG技术无疑是AI领域的一个重要技术,但了解其局限性和正确使用方法同样重要。这一章节,我们来聊聊大家在学习了RAG了之后常见的一些误区。[heading2]随意输入任何文档就能得到准确回答[content]这是最常见的误区,这也是我写这篇文章的一个主要原因之一。很多人在了解了RAG之后,尤其是看过很多营销号的内容之后,感觉像捡到了宝贝。这会给人一种错觉:好像随意的输入任何文档就可以得到准确的回答。上文我们已经讲了RAG的流程,主要包含:离线环节:文档解析,文档切割以及向量化写入向量数据库在线检索环节:用户问题理解、初步检索、重排序以及大模型生成上述的任何一环节而言都会影响RAG的最终质量。尽管RAG的基本概念不难理解,但有效实现RAG系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等。这些都需要专业知识和持续优化[heading2]RAG完全消除了AI的幻觉[content]虽然RAG可以显著减少幻觉,但并不能完全消除。模型仍可能在检索到的信息基础上进行不当的推理或生成错误信息。简单来讲:只要有大模型参与,就有可能产生幻觉[heading2]RAG不消耗大模型的Token了[content]从上面的最后大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到LLM。然后由LLM进行重新整理输出,所以RAG仍然是消耗大模型的Token的请注意:RAG技术并不是简单的将知识库的内容直接检索出来给到用户,而是要经过大模型的处理,从而生成上下文更通顺的回答

元子:WayToAGI 知识库究竟咋用?

以上,都是对于不知道怎么用这个知识库、在AI信息洪流被冲得晕头转向的小伙伴。但是,知识库里还有很多很多高质量教程和文章。⚠️记住:知识库在不断更新,常来逛逛遇到问题先搜索,搜不到就提问好用的内容要收藏,方便下次查找每个人都有自己的节奏,不要着急一旦你有了自己的方向、自己持续去玩的AI角度,这里面大量高质量的教程就是你最好的助力!当你也成为一个🐂的时候、当你愿意分享的时候,请不要忘记,给社区也留下点什么~我们开源知识库、开源社区的意义,就是共建、共学、互相帮助,这是我们共同的社区,期待你能用好它,也期待你能一起来共建它。一个人走得快,一群人走得更远!每个AI高手都是从小白开始的。不要怕犯错,大胆尝试,你也可以!🚀最后偷偷放个名片,如果想要联系我,和我唠唠,可以戳这里:[元子:一份不太正经的使用说明书v0.1🚀](https://waytoagi.feishu.cn/wiki/GYq4wOOJEiZpqUk4jsWcWPaZnCf)

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

Others are asking
知识库目录
以下是为您整理的知识库目录: 1. 直播一期:知识库及 GPT 基础介绍 知识库及社群介绍 最新知识库精选同步 通往 AI 绘画之路(小红书),专注于 AI 绘画,分享优质设计 Prompt 知识库目录导览 2. Coze 打造 AI 私人提效助理实战知识库 最新版推荐阅读: 目录 3. 5.关于我们&致谢 AGI 知识库:一个启程的故事 介绍:WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,大家贡献并整合各种 AI 资源,使得大家都可以轻松学习各种 AI 知识,应用各类 AI 工具和实战案例等。无论您是 AI 初学者还是行业专家,都可以在这里发掘有价值的内容,让更多的人因 AI 而强大。 特别感谢一路上支持和推荐知识库的伙伴们,并开辟一个目录深表感激。
2025-03-28
如何建立个人知识库
建立个人知识库可以通过以下方式: 1. 利用 GPT 打造个人知识库: 使用 embeddings:将文本转换成向量,节省空间,可理解为索引。把大文本拆分成小文本块并转换为 embeddings 向量,保存在向量储存库中。当用户提问时,将问题转换为向量并与库中向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 理解 embeddings:embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 2. 本地部署大模型以及搭建个人知识库: 了解 RAG:利用大模型能力搭建知识库是 RAG 技术的应用。在大模型训练数据截止后,通过检索外部数据并在生成步骤中传递给 LLM。RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文本加载器:将用户提供的文本加载到内存中,便于后续处理。
2025-03-28
最适合搭建本地个人知识库的ai是什么
以下是一些适合搭建本地个人知识库的 AI 相关技术和工具: 1. RAG(Retrieval Augmented Generation)技术:利用大模型的能力搭建知识库,其应用包括文档加载(从多种来源加载文档)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)和输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. Open WebUI:一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,是构建知识库的基础之一)。如果要求不高,通过其可实现本地大模型的对话功能。 3. AnythingLLM:包含 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。安装完成后,配置主要分为三步,包括选择大模型、文本嵌入模型和向量数据库。在 AnythingLLM 中,有 Workspace 的概念,可创建工作空间,上传文档并进行文本嵌入,还提供了 Chat 模式(综合给出答案)和 Query 模式(仅依靠文档数据给出答案)两种对话模式。
2025-03-28
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
flowith知识库的用法
Flowith 知识库的用法包括以下方面: 1. 拆解创作任务: 将复杂的创作任务拆解到合适的颗粒度,为 AI 提供指导,例如拆解创作“科幻预见未来”的步骤。 明确关键任务节点和围绕其展开的主线任务。 2. 建立定向知识库: 将相关内容导入到 flowith 的知识花园中作为 AI 可调用的知识库,例如将《梦想与颠覆》卡牌的相关内容转化为文字上传。 打开智能拆分模式,让 AI 自动分析和优化拆分逻辑,形成知识“种子”。 激活知识库后,AI 会启用知识关联功能,使输出内容更具针对性。 可以发布或分享自己的知识库,也可在知识市场中使用他人的。 3. 构建知识库: 选择“Manage Your Knowledge Base”进入知识库管理页面。 点击左上角的加号添加新的知识库,并起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 处理文件。 4. 选择知识库提问: 在页面左侧可看到检索资料的来源,并可点击显示按钮展现所有原始信息。 Flowith 可以进行“可视化”的追问,能明确看到问答之间的序列关系。 可以在画布上平行提问,默认延续前面的问题,鼠标点击画布其他部分可新开问题。 不同的提示词面对同样的上下文会有不同结果,详细和强化的提示词能使答案更聚焦、详细。
2025-03-26
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
帮我推荐几个好用的AI工具
以下为您推荐一些好用的 AI 工具: AI 新闻写作工具: 1. Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,节省写作时间并提高效率。 2. Writesonic:专注于写作,提供新闻稿件生成、标题生成、摘要提取等功能,智能算法能根据用户信息快速生成高质量新闻内容,适合新闻写作和编辑人员。 3. Jasper AI:主打博客和营销文案,也可用于生成新闻类内容,写作质量较高,支持多种语言。 内容仿写 AI 工具: 1. 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,支持多种文体写作,如心得体会、公文、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 是由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 写代码或辅助编程的 AI 产品: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手,基于自研的基础大模型进行微调。 7. Codeium:由 AI 驱动,通过提供代码建议、重构提示和代码解释帮助软件开发人员提高编程效率和准确性。 更多相关工具可查看: 1. 更多 AI 写作类工具:https://www.waytoagi.com/sites/category/2 2. 更多辅助编程 AI 产品:https://www.waytoagi.com/category/65 以上工具功能和适用场景可能不同,您可根据自身需求选择最适合的工具。内容由 AI 大模型生成,请仔细甄别。
2025-03-28
有没有好的AI爬虫工具
以下是为您推荐的一些 AI 爬虫工具: FireCrawl 开源爬虫工具:无需站点地图,可抓取任何网站的所有可访问子页面。抓取内容可转换为 Markdown 格式,支持 JavaScript 动态内容,并提供易用 API,简化内容爬取和转换。链接:https://x.com/imxiaohu/status/1780592067586269465 MediaCrawler:支持小红书、抖音、快手、B 站和微博等平台内容抓取,集成 IP 代理池防封,支持视频、图片、评论等多种数据格式保存。链接:https://github.com/NanmiCoder/MediaCrawler 、https://x.com/imxiaohu/status/1769569874601546034?s=20
2025-03-28
推荐一些优质AI信息源,X上的
以下是为您推荐的一些优质 AI 信息源: 1. 在,Grok 能通过 X 平台实时了解世界,还能回答多数其他 AI 系统拒绝的棘手问题,独具幽默回答模式,可避免恶意提问,留下邮件可申请早期测试。 2. 「AI 研究报告》中文版,这是对 2022 年 10 月2023 年 10 月 AI 现状及进展最为全面的报告。 3. 即刻 App 的“”等免费圈子,这里有前沿信息线索,很多 Twitter 上的开发者大牛也会在此分享。 此外,AI 知识库的信息来源还有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。对于初学者入门,推荐看 Open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。还有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,以及软件 2.0 时代相关内容。
2025-03-28
AI阅读习惯养成APP
以下是为您提供的关于 AI 阅读习惯养成的相关内容: AI 稍后读助手的设计思路: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看,提高可访问性。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成合适的阅读计划。 同在字节生态中的 Coze、飞书、飞书多维表格可以构建完整的 AI 工作流:通过飞书机器人与 Coze 搭建的智能体对话,在聊天窗口完成链接输入和阅读计划输出;由 Coze 调用大模型、插件完成内容整理和推荐;利用飞书多维表格存储和管理稍后读数据,无需开发插件和 APP 即可实现跨平台的稍后读收集与智能阅读计划推荐。 关于 DeepSeek R1 的纯强化学习: DeepSeek R1 引入纯强化学习(RL),不依赖大量人类标注数据,通过自我探索和试错学习。在“冷启动”阶段,通过少量人工精选的思维链数据初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统反馈下(对结果准确率与回答格式进行奖励)自主探索推理策略,不断提升回答准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间。如 Alpha Zero 只训练三天就完胜 Alpha Go Lee,Alpha Go 结合监督学习和强化学习,受人类局限,Alpha Zero 纯强化学习,具有创造性风格。大模型 AI 在纯强化学习下展现出超出想象的成长潜力,DeepSeek R1 更注重学习推理底层策略,培养通用推理能力,实现跨领域知识迁移运用和推理解答。
2025-03-28
如何详细的学习AI
以下是详细的学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,学习 AI 都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2025-03-28
2024年10月的AIPO活动相关云文档在哪儿?
以下是与 2024 年 10 月的 AIPO 活动相关的云文档: :包含关于 AI 模型训练的介绍与讲解,如 Eagle 插件批量收藏 3D 图表、不同步数训练时间、使用 MZ 数据集训练 Flux、云服务器训练流程、训练集收集要求、训练模型的时机、角色一致性表现、云服务器训练集设置、模型训练参数设置、模型训练启动与等待等内容。 》,列举了美国融资金额超过 1 亿美元的 AI 公司。 :包含 2024 年 10 月 24 日娜乌斯佳:AIGC 商业片落地经验分享等多个日期的智能纪要。
2025-03-28
prompt提示词教学文档
以下是为您提供的 prompt 提示词教学文档: 一、Prompt 的专场教程 基础篇 1. 解释了什么是 prompt(提示词)以及为何其被称为咒语,使用 AI 的人被称为魔法师。 2. 阅读完本教程可迅速入门 prompt 的使用,达到一般公司设计岗所需的 AI 绘图水准。 3. 阅读时长约 30 分钟,建议打开任意一款 SD 产品分屏对照使用。若有不清晰之处,可在评论区发言或添加微信 designurlife1st 沟通(备注来意:ai 绘图交流)。 二、集合 Deepseek 提示词方法论 1. 核心原理认知 AI 特性定位:支持多模态理解,包括文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,约 4000 汉字)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重(开头/结尾)、符号强调敏感。 2. 基础指令框架 可套用框架指令,包括四要素模板。 格式控制语法:强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 三、小七姐:Prompt 喂饭级系列教程小白学习指南(一) 1. 认为对于 prompt 新手教程的帖子比较零散,不成体系,进行了统一收集和整理。 2. 学习 prompt 的第一步要有一个大模型帐号,并熟悉与之对话的方式,推荐 ChatGPT4 及国产平替:。 3. 第二步要看 OpenAI 的官方文档,包括。
2025-03-28
文档翻译
以下是一些将英文 PDF 完整翻译成中文的方法和相关的 AI 产品: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 Calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 8. 浏览器自带的翻译功能:如果一些 PDF 太大,翻译工具不支持,除了将 PDF 压缩或者切分外,还可以转成 HTML 格式,然后使用浏览器自带的网页翻译功能。 此外,在文档翻译工程侧还有以下方案架构和效果提升小技巧: 方案架构: 文件解析:从用户上传的 PDF 等格式的文档中解析出文字,智谱开放平台提供了限时免费的文件解析服务 API。 预处理:提取出的文本可能会包含一些不必要的空格、特殊字符或者格式信息,需要对这些文本进行预处理,清除格式,标准化空格,以便于进行翻译。 片段切分:当页面内容较长时,可以通过切分片段,并通过高并发请求大模型来减少整体耗时。 模型调用:将预处理后的文本拼到 Prompt 模板中请求智谱模型 API。 结果整合:翻译完成后,将翻译后的译文按照期望的样式展示在用户交互界面中。 效果提升小技巧: 自定义专业术语:同一词语在不同行业、场景的含义不同,推荐以 KV 对的形式进行专有名词的翻译。 未来,随着大模型的不断迭代,GLM 等大语言模型将成为多语言翻译的主流核心底层技术,为全球用户带来更加精准、流畅的翻译体验。
2025-03-27
dify 读取飞书文档
以下是关于使用扣子读取飞书文档的详细步骤: 扣子是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 登录后,在左侧功能列表中的工作空间,点击右上角“+字段”创建工作流,名称和描述自行输入。 关于读取飞书表格内容的配置: 1. 点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。 2. 添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token 和 field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。 app_token:多维表格的唯一标识符,即表格 URL 中的一段。 field_names:要读取的具体字段,这里需要的是“标题”、“内容”,作为海报的输入。 该节点运行后,就能将多维表格中的内容提取出来。
2025-03-27
有没有ai小说相关的文档
以下是为您找到的与 AI 小说相关的文档内容: 关于 DeepSeek 小说家的文档: 2025 年 2 月 9 日的智能纪要中,财猫将介绍 Deepseek 模型的飞书文档发送到评论区,以便🌈AJ 收录到 v to agi。财猫补充 AGI 之路的文档,以控制 AI 生成小说的字数。🌈AJ 收录财猫的文章《如何用 AI 写出比人更好的文字》。 智能章节中,财猫分享 Deepseek R1 模型特点,包括对汉语理解深刻、文风欢脱、才华横溢能写高质量诗文、有极强发散能力但较难收敛会出现“幻觉”等,在写小说时生成点子很棒但难以形成完整故事。还讲解了 Deepseek re 提示词写法及相关理论,提到 reason 模型与 instruct 模型不同,回顾历史并指出过去提示词中列步骤的问题,如今模型可自行完成步骤,老框架仍有用。围绕 Deepseek REE 提示词展开讨论,指出问题空间理论仍适用,搜索部分无需人工列出,提示词两类基本盘未变但弥补模型缺点的会减少,写提示词要给 AI 足够背景信息,结构化提示词有帮助等。 相关链接: 画小二团队的《李清照》AI 视频创作流程项目文档中,关于故事创作部分: 创作穿越故事的 Prompt 包括标题、设置、主角、反派角色、冲突、对话、主题、基调、节奏和其它等方面的生成模板,并可根据模板为特定题材小说填充内容,分章节生成小说目录。
2025-03-26
有哪些公司主要做数据处理,比如把文档转化成ai可理解的东西
以下是一些主要从事数据处理,将文档转化为 AI 可理解内容的公司: 在基础模型领域,有 OpenAI、Google、Cohere、AI21、Stability.ai 等公司,它们在构建大型语言模型方面展开竞争。此外,还有新兴的开源选项如 Eleuther。 像 Hugging Face 这种共享神经网络模型的社群,在软件 2.0 时代可能成为智慧的枢纽和人才中心。 还有一些独立应用公司,例如 Jasper(创意文案)、Synthesia(合成语音与视频)等,它们涉及 Creator&Visual Tools、Sales&Marketing、Customer Support、Doctor&Lawyers、Assistants、Code、Testing、Security 等各种行业。
2025-03-25
AI幻觉是什么?
AI 幻觉是指 AI 系统生成的信息与事实不符或与预期不符的现象。具体表现为: 生成的输出内容看似合理流畅,但实际上与输入信息、上下文环境或客观事实相矛盾,缺乏逻辑或经验支撑。 表现形式多种多样,例如在艺术创作中照片中突然出现第三只手臂。 AI 幻觉存在潜藏的风险: 误导用户,导致用户获取错误信息从而做出错误判断,如医疗 AI 助手给出错误诊断建议可能延误患者治疗。 传播虚假信息,用于制造和传播虚假新闻报道或社交媒体帖子,误导公众,影响社会稳定。 损害 AI 系统的可信度,降低用户对 AI 系统的信任度,阻碍 AI 技术推广和应用。 为了避免 AI 幻觉,需要对其生成的内容进行检查,因为即使是像 GPT4 这样相对扎实的模型或有互联网连接的 Bing 也不能完全消除幻觉。同时要注意人工智能不会真正解释自己,给出的解释可能是编造的,使用时要对其输出负责,防止被不道德地用来操纵或作弊。
2025-03-21
ai幻觉
AI 幻觉是指 AI 在生成内容时出现的错误或与现实世界不符的情况。以下是关于 AI 幻觉的一些重要方面: 在写东西方面: AI 容易“产生幻觉”并生成看似合理但可能完全错误的内容,需要对其生成的所有内容进行检查。 对于要求提供参考、引用、引文和信息(对于未连接到互联网的模型)的情况尤其危险。 AI 不会真正解释自己,对其思考过程的回答可能是完全编造的。 使用 AI 工具的输出需要承担责任。 在艺术创作方面: 许多 AI 工具会出现幻觉,如照片中突然出现第三只手臂,或者处理请求时间长。 对于试图通过内容实现盈利的用户可能更加令人沮丧。 从技术真相与应对策略角度: 本质:AI 幻觉是模型对训练数据中统计模式的过度依赖,导致无法准确理解和生成新情况的信息,从而输出与现实不符的内容,类似于人类认知偏差中大脑为节省认知资源对信息的扭曲。 表现形式:多种多样且难以察觉,如生成不存在的人物、地点、事件,或对已知事实错误描述;类似于人类的确认偏误、可得性偏差、锚定效应等。 产生原因:都与经验和知识有关,人类受个人成长经历、文化背景、知识结构等影响,而 AI 与训练数据质量、模型结构和训练策略有关,若训练数据有偏差或错误,模型会学习并体现在生成内容中。 影响:可能导致错误决策,如人类在生活中做出错误判断和选择,投资者受可得性偏差影响做出错误投资决策;AI 幻觉可能误导用户、传播虚假信息,甚至在医疗诊断等领域引发安全事故。 目前还没有完全消除 AI 幻觉的方法,但可以通过一些措施来降低其影响。
2025-03-19
ai的幻觉问题
AI 的幻觉问题主要体现在以下几个方面: 1. 可能编造不存在的 API 或错误代码,需要人工严格审查。 2. 在处理复杂项目时,难以设计架构和模块化,难以完全掌握项目需求,也难以独立完成编译、部署、调试等复杂任务。 3. 许多 AI 工具在艺术创作中会出现幻觉,例如照片中突然出现第三只手臂,或者处理请求时间过长。 4. 当用户追问时,AI 可能会钻牛角尖,给出越来越离谱的答复,还可能不懂装懂,提供错误知识。 针对模型幻觉问题,一些解决技巧包括: 1. 新建一个会话窗口重新提问。 2. 告诉 AI 忘掉之前的所有内容,重新交流。 3. 让 AI 退一步,重新审视整个结构,从零开始设计。 4. 当 AI 猜测并修改问题时,可提供日志让其依据判断问题所在。
2025-03-19
消除大模型幻觉的方法
以下是关于消除大模型幻觉的方法的相关内容: 大模型出现幻觉的原因及部分解决办法: 1. 原因: 样本存在错误(Imitative Falsehoods),即学习的“教材”中有错误。 2. 解决办法: 上采样(Up Sampling)。 大模型存在的问题: 1. 输出结果具有不可预测性。 2. 静态的训练数据导致知识存在截止日期,无法即时掌握最新信息。 知识的局限性:模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 幻觉问题:基于数学概率的文字预测导致会在没有答案的情况下提供虚假信息等。 数据安全性:企业担心数据泄露,不愿将私域数据上传第三方平台训练。 Prompt 可以减少幻觉的原因: Prompt 相当于给大模型提供了一个模板,包括对模型的要求、输入和输出的限制,使大模型在限制下得到概率最大的答案,从而提升返回的准确性。 RAG 是解决大模型问题的有效方案: RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。RAG 可与微调结合使用,两者并不冲突。但 RAG 不适合教模型理解广泛领域或学习新语言、格式或样式。
2025-03-17
如何避免ai的幻觉
要避免 AI 的幻觉,可以从以下几个方面入手: 1. 提示词工程: 明确要求 AI 引用可靠来源,例如在询问历史事件时要求引用权威的历史文献,询问科学事实时要求引用已发表的科研论文,询问法律条款时要求引用官方的法律文件。 要求 AI 提供详细的推理过程,例如在询问数学公式时要求展示推导过程,询问代码功能时要求逐行解释代码的含义。 明确限制 AI 的生成范围,例如在询问名人名言时指定名人的姓名和相关主题,询问新闻事件时指定事件的时间范围和相关关键词。 2. 数据方面: 数据清洗:利用各种技术手段对 AI 的训练数据进行“清洗”,去除错误信息、补充缺失数据、修正不一致的内容,并尽可能消除数据中的偏见。 数据增强:为 AI 模型提供更多、更丰富的训练数据,例如在训练图像识别模型时,对已有的图像进行旋转、缩放、裁剪等操作,生成更多新的样本,从而提高模型的泛化能力。 3. 从伦理和社会角度: 制定 AI 伦理规范:需要制定明确的 AI 伦理规范,引导 AI 技术的研发和应用,确保 AI 系统符合人类的价值观和道德准则,避免 AI 被用于危害人类利益的行为。 加强 AI 监管:加强对 AI 系统的监管,建立完善的评估机制,及时发现和纠正 AI 系统中的错误和偏差,防止 AI 幻觉造成严重后果。 提升公众的 AI 素养:提升公众的 AI 素养,让人们了解 AI 技术的原理和局限性,理性地看待 AI 幻觉问题,避免被 AI 误导。 需要注意的是,提示词工程只是一种辅助手段,要从根本上解决 AI 幻觉问题,还需要从数据、模型、训练方法等多个方面进行努力。同时,AI 幻觉既有负面影响,也可能带来正面价值,我们既要警惕其风险,也要善于利用其带来的机遇。
2025-03-07
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06