以下是关于如何更好使用知识库以及 RAG 相关的知识:
RAG技术无疑是AI领域的一个重要技术,但了解其局限性和正确使用方法同样重要。这一章节,我们来聊聊大家在学习了RAG了之后常见的一些误区。[heading2]随意输入任何文档就能得到准确回答[content]这是最常见的误区,这也是我写这篇文章的一个主要原因之一。很多人在了解了RAG之后,尤其是看过很多营销号的内容之后,感觉像捡到了宝贝。这会给人一种错觉:好像随意的输入任何文档就可以得到准确的回答。上文我们已经讲了RAG的流程,主要包含:离线环节:文档解析,文档切割以及向量化写入向量数据库在线检索环节:用户问题理解、初步检索、重排序以及大模型生成上述的任何一环节而言都会影响RAG的最终质量。尽管RAG的基本概念不难理解,但有效实现RAG系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等。这些都需要专业知识和持续优化[heading2]RAG完全消除了AI的幻觉[content]虽然RAG可以显著减少幻觉,但并不能完全消除。模型仍可能在检索到的信息基础上进行不当的推理或生成错误信息。简单来讲:只要有大模型参与,就有可能产生幻觉[heading2]RAG不消耗大模型的Token了[content]从上面的最后大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到LLM。然后由LLM进行重新整理输出,所以RAG仍然是消耗大模型的Token的请注意:RAG技术并不是简单的将知识库的内容直接检索出来给到用户,而是要经过大模型的处理,从而生成上下文更通顺的回答
以上,都是对于不知道怎么用这个知识库、在AI信息洪流被冲得晕头转向的小伙伴。但是,知识库里还有很多很多高质量教程和文章。⚠️记住:知识库在不断更新,常来逛逛遇到问题先搜索,搜不到就提问好用的内容要收藏,方便下次查找每个人都有自己的节奏,不要着急一旦你有了自己的方向、自己持续去玩的AI角度,这里面大量高质量的教程就是你最好的助力!当你也成为一个🐂的时候、当你愿意分享的时候,请不要忘记,给社区也留下点什么~我们开源知识库、开源社区的意义,就是共建、共学、互相帮助,这是我们共同的社区,期待你能用好它,也期待你能一起来共建它。一个人走得快,一群人走得更远!每个AI高手都是从小白开始的。不要怕犯错,大胆尝试,你也可以!🚀最后偷偷放个名片,如果想要联系我,和我唠唠,可以戳这里:[元子:一份不太正经的使用说明书v0.1🚀](https://waytoagi.feishu.cn/wiki/GYq4wOOJEiZpqUk4jsWcWPaZnCf)
其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。