Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何详细的学习AI

Answer

以下是详细的学习 AI 的方法:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

对于中学生学习 AI,建议:

  1. 从编程语言入手学习:
    • 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。
  2. 尝试使用 AI 工具和平台:
    • 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。
    • 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识:
    • 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:
    • 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:
    • 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。
    • 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。

总之,无论是新手还是中学生,学习 AI 都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

Others are asking
比较适合语音克隆的有哪些AI
以下是一些适合语音克隆的 AI: :能将书面内容转化为引人入胜的音频,并实现无缝分发。 :提供专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 此外,还有以下相关信息: DubbingX2.0.3 中的海螺 AI 配音可以进行语音克隆,操作时需上传语音、命名声音、选择语言,原音频若有背景音乐最好在剪影中去除以保证生成的音色模型效果好且纯净。去除原音频背景杂音可通过打开剪映,按以下步骤操作:打开剪映,点击开始创作,导入原始音频或视频。 StepAudio:130B 语音文本多模态模型开源,集成语音识别、语义理解、对话生成、语音克隆、音频编辑、语音合成等功能,成本低质量高的语音克隆,支持“蒸馏”技术简化为更轻量版。
2025-03-31
钉钉AI怎么样
钉钉在 AI 方面有一定的应用和功能: 1. 钉钉会议管理功能:利用自然语言处理、数据分析等技术,对会议进行管理,包括会议安排、签到、记录等,以提高会议效率。例如自动记录会议内容,生成会议纪要,方便参会人员回顾。 2. 可以通过自建应用接入 AI 相关能力: 创建应用:进入,登录后点击创建应用,填写相关信息,添加“机器人”能力,配置机器人信息后发布,点击“点击调试”会自动创建测试群聊,还可进行版本管理与发布。 项目配置:点击凭证与基础信息获取 Client ID 和 Client Secret 两个参数,参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",运行项目前需安装依赖。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-03-31
AI发展史
AI(人工智能)的发展历程如下: 1. 起源阶段(1943 年):心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950 年:计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956 年:在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,人工智能一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落。 AI 技术发展历程还包括: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有: 1. 大模型:如 GPT、PaLM 等。 2. 多模态 AI:视觉 语言模型如 CLIP、Stable Diffusion,以及多模态融合。 3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:元学习、一次学习、提示学习等。 5. 可解释 AI:模型可解释性、因果推理、符号推理等。 6. 机器人学:强化学习、运动规划、人机交互等。 7. 量子 AI:量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2025-03-31
ai agent 案例
以下是一些关于 AI Agent 的案例和相关信息: Agentic Workflows 是强大的工具,能帮助自动化完成需决策和推理的复杂任务。文中回顾了 AI Agents 的核心组成部分,包括记忆、工具和推理能力,讨论了常见工作流模式,如规划、工具使用和反思,还概述了两个特别有效的用例,以及市场上已有的两个 AI Agents 的工作流,并探讨了其优势、局限性和挑战。 最早实现让 LLM 自己做自动化多步骤推理想法原型的是 AutoGPT 和 BabyAGI 两个开源的智能代理。随着 LLM 的推理能力和速度提高,Agent 的思路已被很多创业公司和科技巨头用到产品中,如 Devin、Google 等。 以下是一些 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,适用于构建各类问答 Bot,集成丰富插件工具。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。
2025-03-31
ai思维导图提示词
以下是关于 AI 思维导图提示词的相关内容: 在文生图的提示词中,例如“”,来告诉 AI 不要的内容。 在 AI 作图的创作中,有以下要点: 1. 趣味性与美感概念:趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感需在美术基础不出错前提下形式与内容结合。 2. 纹身图创作:强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 魔法少女示例:以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。 4. 提示词编写方法:用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。 5. 实操演示准备:以未发布的 Lora 为例,按赛题需求先确定中式或日式怪诞风格的创作引子。 6. 人物创作过程:从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。 优化和润色提示词(Prompt)的方法包括: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述需求,而非过于笼统的词语。 2. 添加视觉参考:在 Prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究流行且有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,并根据输出效果反馈持续优化完善。 总之,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界,保持开放思维尝试创新描述方式。
2025-03-31
ai提示词
以下是关于 AI 提示词的相关信息: 存在“PUA 式”AI 提示词,如 Codeium & Windsurf 的相关提示词,以虚构的道德胁迫和极端情景迫使 AI 生成高质量代码,引发网友反感和不适。 有一些关于提示词的项目合集,如 Awesome DeepSeek Integrations 项目,可帮助开发者启发灵感和探索新的 AI 应用场景。 对于 SD 新手,有多个提示词模板的相关网站,如 Majinai、词图 PromptTool AI 绘画资料管理网站、Black Lily 等。 星流一站式 AI 设计工具中: 提示词用于描绘画面,输入语言支持中英文,通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词的要点包括内容准确,包含人物主体、风格、场景特点等;调整负面提示词以帮助 AI 理解不想生成的内容;利用“加权重”功能让 AI 明白重点内容;还可使用辅助功能,如翻译、删除所有提示词、会员加速等。
2025-03-31
如果一个不懂技术的人学习AI,应该怎么做?请列定详细的步骤。
以下是一个不懂技术的人学习 AI 的详细步骤: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,进行实践来巩固知识,尝试使用各种产品做出自己的作品。 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考以下具体的开发示例: 1. 以“Windsurf 学习共创社区”为例,进行零基础开发网站 技术选型:Vue + TypeScript(无需先了解具体含义)。 目标用户:零基础开发学习者。 参考项目:Cursor101。 开发流程: 需求分析与代码生成。 环境配置自动化。 问题诊断与修复。 界面优化与细节打磨。 功能迭代与完善。 2. 搭建对接 GPT 大模型的微信聊天机器人 选用技术组件:极简未来平台、腾讯云轻量应用服务器、宝塔面板和 Docker。 按照详细的配置步骤操作:购买服务器、配置宝塔面板,部署 Docker 和 COW 组件,绑定微信号。 了解费用问题:包括极简未来平台的费用和腾讯云服务器的费用,以及如何通过积分和优惠降低成本。 掌握运维问题的解答:学会简单高效地管理和维护服务器和服务,以及遇到问题时的解决方案。 如果在学习过程中有任何不懂的地方,可以随时寻求帮助。同时,还可以加入免费的 AI Agent 共学群,获取更多玩法和经验分享以及最新的 AI 前沿资讯。
2025-03-28
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28
我是一名电商设计师,现在想学习SD AI绘图,有一点基础,但学习课程资源有限,请你帮我制定一份详细的学习计划,并提供一些学习资源。
以下是为您制定的学习 SD AI 绘图的详细计划及相关学习资源: 学习计划: 1. 首先,深入学习 Stable Diffusion 的核心基础原理,包括模型工作流程、核心基础原理、训练全过程以及其他主流生成式模型介绍。 2. 接着,掌握 Stable Diffusion 的核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型等。 3. 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同方式,如使用 ComfyUI、SD.Next、Stable Diffusion WebUI、diffusers 搭建推理流程,并查看生成示例。 4. 了解 Stable Diffusion 的经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建等。 5. 最后,尝试从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括配置训练环境与训练文件,以及基于 Stable Diffusion 训练 LoRA 模型。 学习资源: 1. 教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎。 目录涵盖了 Stable Diffusion 系列的各个方面,包括核心基础知识、网络结构解析、搭建推理流程、应用场景和模型训练等。 2. SD 模型权重百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得资源链接,包含多种模型权重。 3. SD 保姆级训练资源百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得资源链接,包含数据处理、模型微调训练以及基于 SD 的 LoRA 模型训练代码全套资源。 4. Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2025-03-28
基于深度学习的商代食器分类研究 明确详细的研究意义
基于深度学习的商代食器分类研究具有多方面的重要意义。首先,它有助于深入了解商代的饮食文化和社会生活。通过对食器的准确分类,可以揭示当时人们的饮食习惯、烹饪方式以及社交礼仪等方面的信息。 其次,为考古学研究提供新的方法和视角。利用深度学习技术能够更高效、更准确地处理和分析大量的商代食器数据,突破传统研究方法的局限。 再者,有助于文物保护和管理。精确的分类有助于制定更有针对性的保护策略,确保这些珍贵的文化遗产得到妥善保存。 最后,促进跨学科研究的发展。将深度学习与考古学相结合,能够吸引更多不同领域的学者参与,推动相关研究的创新和进步。
2025-03-27
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
基于你的回答,对刚才所提到的三个部分再次展开详细叙述,要求每个部分的叙述字数不少于1000字
以下是对您提供的三个部分的详细叙述: 一、陶力文律师:拘灵遣将|不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事 在这部分内容中,重点强调了律师在运用 AI 时写好提示词的重要性以及相关的写作技巧和方法。 首先,结构化内容组织至关重要。通过使用编号、子标题和列表等方式,能够使文章的逻辑更加清晰,便于读者快速把握重点和理解内容。例如,在阐述具体的法律条款和案例分析时,可以将相关要点有条理地罗列出来,增强文章的可读性。 其次,规定概述内容解读结语的结构能够使文章围绕主题展开,有始有终。在开始时对相关规定进行简要概括,让读者对整体框架有初步了解;然后对具体内容进行深入解读,帮助读者理解规定的内涵和适用范围;最后以结语总结,强调重点或提出展望。 再者,案例和挑战的结合能够使文章更具说服力和实用性。通过引入实际案例,能够让抽象的法律规定和理论变得具体可感,读者可以更直观地理解其在实际操作中的应用。同时,分析潜在挑战并提供解决方案,能够帮助律师在面对复杂情况时做出更明智的决策。 此外,结合法规和实际操作也是必不可少的。法规为律师的工作提供了依据和准则,而实际操作案例则展示了法规在具体情境中的应用。通过两者的结合,能够为律师提供全面、准确的指导,使其在运用 AI 时更加得心应手。 最后,商业术语的使用能够体现文章的专业性和针对性。在餐饮行业相关的法律写作中,运用特定的商业术语,能够准确传达信息,避免歧义,使文章更符合行业特点和需求。 二、AI 梦:一丹一世界(下)2025 年 2 月 8 日副本 这部分内容主要围绕摄影构图和色彩在 AI 绘画中的应用展开。 在摄影构图方面,三角形构图法以其独特的稳定性能够让画面更加平衡美观。一张照片可以同时满足多种构图法,且构图并非一定要严谨,关键是要能够突出主体、叙事并留白,避免画面杂乱。同时,中国化美学构图具有极简且丰富、主次分明的特点,虽然欣赏门槛低,但掌握运用起来有一定难度。重复构图作为一种强大的视觉工具,能够增强信息的传递。 在色彩方面,色彩在 AI 绘画中具有重要地位,是拉开作品差距的关键因素。色彩部分涵盖了色彩心理学、色环、配色方案等内容。色彩心理学表明颜色能够影响人的情绪,在市场营销等多个领域都有着重要作用。例如,年度流行色会影响相关的营销活动。不同的颜色如红、黄、蓝等能够表现出多种不同甚至相反的情绪。 三、AI 梦:一丹一世界(下)2025 年 2 月 8 日副本 此部分主要涉及 AI 炼丹直播共学课的相关内容。 会议开场简单介绍了会议的背景和基本情况。 在直播共学课的介绍中,提到了课程由未推 AGI 麦乐园和摩哒社区共同举办,教授使用 Lora 或 AI 生图软件生图,并回顾了首节课内容及回放渠道。同时,讲解了 AI 梦一单一世界比赛的要求,包括使用特定平台和底模训练 Lora,提交六张以上含多样画面的作品等。 在作图创作思路方面,分为三步:第一步确定主题,可依据 Lora 风格或通过制造反差来确定方向;第二步确定主体,如人、动物、建筑等,并进行角色设定的联想;第三步增添叙事感,通过设置有反差、反逻辑的画面和多个元素,避免画面单调无趣。 在图片创作思路之后,还探讨了图片构成因素中的构图。
2025-03-25
零基础小包AI学习路径
以下是为零基础的您提供的 AI 学习路径: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,像二师兄这样的案例也可供您参考。二师兄在二月因七彩虹售后群老哥的分享,要了 SD 秋叶安装包,下载了教学视频,迈出 AI 学习的第一步。三月啃完 SD 的所有教程并开始炼丹,四月尝试用 GPT 和 SD 制作图文故事绘本、小说推文的项目,五月加入 Prompt battle 社群,开始 Midjourney 的学习。 如果您是零基础小白,还可以: 找网上的基础课程进行学习。 观看科普类教程。 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 利用一些练手的 Prompt 工具。
2025-03-30
AI学习路线
以下是为新手提供的 AI 学习路线: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-30
哪个AI能帮助初中生规划学习计划
以下几个 AI 可以帮助初中生规划学习计划: 1. 文心大模型 4.0:它可以按照以下步骤为用户制定学习计划。首先询问学习目标或需要解决的问题,然后依次询问并收集学习目标与个人或职业发展目标的关系、具体学习内容、量化学习进度和成功的标准、目标完成的时间框架、目标的现实可行性等信息,最后综合这些信息制定详细的分步骤学习计划,包括每日和每周的学习内容及目标。 2. ChatGPT:可以协助设定量化目标,比如以考取雅思 8.0 且能和朋友或客户流利交谈为目标。然后会询问达成目标的时间框架,比如半年。还会询问目标的现实可行性,比如考虑目前的英语水平、日常时间安排、学习资源等情况。 例如,如果一个初中生想要提高英语水平,设定半年内考取雅思 8.0 且能流利交流为目标,目前雅思 6.5,每天能投入 2 小时,周末更多,有网络课程访问条件且能购买学习材料,那么这些 AI 可以根据这些信息为其制定具体的学习计划。
2025-03-30
如何学习Prompt
以下是关于如何学习 Prompt 的详细指导: 一、准备工作 首先,您需要有一个大模型帐号,并熟悉与它们对话的方式。以下为您推荐一些可用的平台: 1. ChatGPT4(性能最强) 2. 国产平替: 二、学习资料 1. 必看 OpenAI 的官方文档: 同时,还有中文精度版的官方 Cookbook 可供参考: 三、网站资源 以下是一些精选的 Prompt 相关网站: |站点名|网站介绍|地址|附件| ||||| |Learning Prompt|授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney||| |FlowGPT|国外做的最大的 prompt 站,内容超全面,更新快||| |ChatGPT Shortcut|ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出||| |ClickPrompt|轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享||| |Prompt Extend|让 AI 帮你自动拓展 Prompt||| |PromptPerfect|帮你自动优化提示词,你可以看到优化前后的对比||| |PromptKnit|The best playground for prompt designers||| |PromptPort(支持中文)|AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt||| |Prompt Engineering Guide|GitHub 上点赞量非常高的提示工程指南,基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。||| 四、学习建议 1. 理解提示词的作用:提示词向模型提供了上下文和指示,其质量直接影响模型输出的质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”、“总结”、“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中查找。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新研究成果和方法论。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-29
学习SRCNN的路径可以是什么
很抱歉,目前知识库中没有关于学习 SRCNN 路径的相关内容。但一般来说,学习 SRCNN 可以从以下几个方面入手:首先,深入了解卷积神经网络(CNN)的基础知识,包括卷积层、池化层、激活函数等。其次,查阅相关的学术文献和研究报告,以获取关于 SRCNN 的详细原理和实现方法。还可以在网上搜索相关的教程和课程资源,例如在线课程平台、技术博客等。同时,尝试使用相关的深度学习框架,如 TensorFlow、PyTorch 等,进行实践和代码实现。最后,参与相关的技术社区和论坛,与其他研究者和开发者交流经验和心得,以加深对 SRCNN 的理解和应用。
2025-03-29
学习SRCNN可以通过怎样的路径
很抱歉,目前知识库中没有关于学习 SRCNN 路径的相关内容。但一般来说,学习 SRCNN 可以从以下几个方面入手:首先,深入了解卷积神经网络(CNN)的基础知识,包括卷积层、池化层等概念。其次,查阅相关的学术文献和研究报告,以获取关于 SRCNN 模型的详细架构和原理。还可以参考在线的课程和教程,一些知名的在线教育平台可能会有相关的内容。同时,实践是关键,可以通过使用相关的数据集进行模型的训练和优化,来加深对 SRCNN 的理解和掌握。
2025-03-29