以下是为您提供的关于 AI 阅读习惯养成的相关内容:
AI 稍后读助手的设计思路:
同在字节生态中的 Coze、飞书、飞书多维表格可以构建完整的 AI 工作流:通过飞书机器人与 Coze 搭建的智能体对话,在聊天窗口完成链接输入和阅读计划输出;由 Coze 调用大模型、插件完成内容整理和推荐;利用飞书多维表格存储和管理稍后读数据,无需开发插件和 APP 即可实现跨平台的稍后读收集与智能阅读计划推荐。
关于 DeepSeek R1 的纯强化学习:
DeepSeek R1 引入纯强化学习(RL),不依赖大量人类标注数据,通过自我探索和试错学习。在“冷启动”阶段,通过少量人工精选的思维链数据初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统反馈下(对结果准确率与回答格式进行奖励)自主探索推理策略,不断提升回答准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于
基于前面的分析,我们可以勾勒出AI稍后读助手的大致思路:1.简化"收集":1.1.实现跨平台收集功能,支持电脑(web端)、安卓、iOS多端操作。1.2.考虑到待阅读内容通常都有网页链接,最理想的方式是只需输入一个URL就能完成收集。借鉴微信文件传输助手的直观操作方式,通过聊天窗口完成收集输入会更符合用户习惯。2.自动化"整理入库":2.1.为便于存储和回顾已收集的阅读清单,系统应在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。2.2.同时,这份阅读清单最好也能支持跨平台查看,提高可访问性。3.智能"选择"推荐:3.1.根据当前收藏记录,结合用户的阅读兴趣,进行相关性匹配,并生成最合适的阅读计划。根据以上思路不难发现,同在字节生态中的Coze、飞书、飞书多维表格,正好可以为AI稍后读构建一个完整的AI工作流。具体来说:通过飞书机器人与Coze搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出由Coze调用大模型、插件,完成内容的整理、推荐利用飞书多维表格存储和管理稍后读数据这样一来,理论上无需开发任何插件、APP,也能实现跨平台的稍后读收集与智能阅读计划的推荐。
基于前面的分析,我们可以勾勒出AI稍后读助手的大致思路:1.简化"收集":1.1.实现跨平台收集功能,支持电脑(web端)、安卓、iOS多端操作。1.2.考虑到待阅读内容通常都有网页链接,最理想的方式是只需输入一个URL就能完成收集。借鉴微信文件传输助手的直观操作方式,通过聊天窗口完成收集输入会更符合用户习惯。2.自动化"整理入库":2.1.为便于存储和回顾已收集的阅读清单,系统应在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。2.2.同时,这份阅读清单最好也能支持跨平台查看,提高可访问性。3.智能"选择"推荐:3.1.根据当前收藏记录,结合用户的阅读兴趣,进行相关性匹配,并生成最合适的阅读计划。根据以上思路不难发现,同在字节生态中的Coze、飞书、飞书多维表格,正好可以为AI稍后读构建一个完整的AI工作流。具体来说:通过飞书机器人与Coze搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出由Coze调用大模型、插件,完成内容的整理、推荐利用飞书多维表格存储和管理稍后读数据这样一来,理论上无需开发任何插件、APP,也能实现跨平台的稍后读收集与智能阅读计划的推荐。
而DeepSeek R1则引入了纯强化学习(RL),不依赖大量的人类标注数据,而是让AI通过自我探索和试错来学习:DeepSeek R1在“冷启动”阶段,仅通过少量(数千条)人工精选的思维链数据进行初步引导,建立起符合人类阅读习惯的推理表达范式。随后,便主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。准确率奖励:用于评估AI提供的最终答案是否正确,以此为AI提供答案准确度的反馈。格式奖励:强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。正如Alpha Zero只训练了三天,就以100比0的战绩完胜Alpha Go Lee(战胜李世石的版本)。Alpha Go(老):监督学习+强化学习。学习人类棋谱,也更接近人类职业棋手的风格,继承了人类的局限。Alpha Zero(新):完全摒弃人类数据的纯强化学习。从零开始自我博弈,不受限于人类经验,具有创造性的下棋风格。大模型AI在纯强化学习(RL)下同样也展现出了超出人类研究员想象的成长潜力:“我们只需要简单的为其提供正确的激励措施,它就会自主开发高级的问题解决策略,RL有可能解锁新的人工智能水平。”*只不过Alpha Zero的强化学习更加专精棋类。而DeepSeek R1在训练中,更注重学习推理的底层策略,培养通用推理能力,使其能够实现跨领域的知识迁移运用和推理解答。