Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”,来源于 2017 年 Google Brain 团队发布的同名论文。它主要用于处理序列数据,包括热门的 NLP 任务。与传统模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。
Transformer 采用完全并行的计算方式,借助 GPU 加速训练速度,并引入自注意力机制,能够直接对输入序列中的每个位置进行编码和解码,从而更好地捕捉序列中的长程依赖关系。
最流行的基于 Transformer 的模型之一是 BERT,它是“来自 Transformer 的双向编码器表示”(“Bidirectional Encoder Representations from Transformers”)的缩写。BERT 已进入几乎所有的 NLP 项目,包括谷歌搜索。它可以扩展来解决一系列不同的任务,如文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户的查询等。
此外,Transformer 不仅在自然语言处理领域发挥重要作用,如谷歌搜索去年推出的基于 Transformer 的聊天机器人 Meena,还在自然语言处理之外掀起了浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。
Transformer是一种深度学习模型,核心思想是"Attention is all you need",这句话来源于2017年由Google Brain团队发布的同名论文。Transformer主要用于处理序列数据,包括现在最火的NLP任务。与之前的模型不同,Transformer完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。
“Transformer”是一种注意力模型,也被称为变形金刚模型。该模型源于Google团队在2017年发布的一篇论文《Attention is All Your Needs》。相比于传统的序列模型,Transformer采用了完全并行的计算方式,借助GPU加速训练速度。此外,Transformer还引入了自注意力机制,能够直接对输入序列中的每个位置进行编码和解码,从而更好地捕捉序列中的长程依赖关系。通过海量的训练学习,大型的神经网络模型中存储了大量的知识,这些知识可以通过文字生成的方式进行展现。即使是在闲聊中,像ChatGPT这样的模型也能够表现出拥有更多的世界知识和某种程度的推理能力,这正是使它与众不同的原因。这种能力使得ChatGPT能够更好地理解人类语言的含义和上下文,并能够生成更加自然和流畅的语言表达。[Character.ai](http://Character.ai)也在研发自己的预训练大型语言模型,类似于ChatGPT。因此,在这个平台上与聊天机器人互动,也会感觉像是与真人对话一样。
最流行的基于Transformer的模型之一BERT,它是“来自Transformer的双向编码器表示”(“Bidirectional Encoder Representations from Transformers”)的缩写。它是谷歌的研究人员在我2018年加入公司前后引入的,很快就进入了几乎所有的NLP项目,包括谷歌搜索。BERT不仅指模型体系结构,还指经过训练的模型本身,您可以[在这里免费下载和使用](https://github.com/google-research/bert)。谷歌的研究人员在一个庞大的文本语料库上对它进行了训练,它已经成为一种用于自然语言处理的通用模型。它可以扩展来解决一系列不同的任务,比如:文本摘要问答分类命名实体识别文本相似度攻击性信息/脏话检测理解用户的查询等等BERT证明,您可以在未标记的数据上建立非常好的语言模型,比如从Wikipedia和Reddit中提取的文本,并且这些大型的“基础”模型可以与特定领域的数据相适应,适用于许多不同的用例。最近,OpenAI创建的模型GPT-3生成真实文本的能力让人们大吃一惊。谷歌搜索去年推出的Meena是一个基于transformer的聊天机器人(akhem,对话代理),几乎可以就任何话题进行引人入胜的对话(其作者曾花了20分钟与Meena争论作为人类意味着什么)。Tansformer也在自然语言处理之外掀起了一股浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。