Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是transformer

Answer

Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”,来源于 2017 年 Google Brain 团队发布的同名论文。它主要用于处理序列数据,包括热门的 NLP 任务。与传统模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。

Transformer 采用完全并行的计算方式,借助 GPU 加速训练速度,并引入自注意力机制,能够直接对输入序列中的每个位置进行编码和解码,从而更好地捕捉序列中的长程依赖关系。

最流行的基于 Transformer 的模型之一是 BERT,它是“来自 Transformer 的双向编码器表示”(“Bidirectional Encoder Representations from Transformers”)的缩写。BERT 已进入几乎所有的 NLP 项目,包括谷歌搜索。它可以扩展来解决一系列不同的任务,如文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户的查询等。

此外,Transformer 不仅在自然语言处理领域发挥重要作用,如谷歌搜索去年推出的基于 Transformer 的聊天机器人 Meena,还在自然语言处理之外掀起了浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。

Content generated by AI large model, please carefully verify (powered by aily)

References

机器学习-Transformer的基本工作原理

Transformer是一种深度学习模型,核心思想是"Attention is all you need",这句话来源于2017年由Google Brain团队发布的同名论文。Transformer主要用于处理序列数据,包括现在最火的NLP任务。与之前的模型不同,Transformer完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。

Character.ai:每个人都可定制自己的个性化AI

“Transformer”是一种注意力模型,也被称为变形金刚模型。该模型源于Google团队在2017年发布的一篇论文《Attention is All Your Needs》。相比于传统的序列模型,Transformer采用了完全并行的计算方式,借助GPU加速训练速度。此外,Transformer还引入了自注意力机制,能够直接对输入序列中的每个位置进行编码和解码,从而更好地捕捉序列中的长程依赖关系。通过海量的训练学习,大型的神经网络模型中存储了大量的知识,这些知识可以通过文字生成的方式进行展现。即使是在闲聊中,像ChatGPT这样的模型也能够表现出拥有更多的世界知识和某种程度的推理能力,这正是使它与众不同的原因。这种能力使得ChatGPT能够更好地理解人类语言的含义和上下文,并能够生成更加自然和流畅的语言表达。[Character.ai](http://Character.ai)也在研发自己的预训练大型语言模型,类似于ChatGPT。因此,在这个平台上与聊天机器人互动,也会感觉像是与真人对话一样。

解析 Transformer 模型:理解 GPT-3、BERT 和 T5 背后的模型

最流行的基于Transformer的模型之一BERT,它是“来自Transformer的双向编码器表示”(“Bidirectional Encoder Representations from Transformers”)的缩写。它是谷歌的研究人员在我2018年加入公司前后引入的,很快就进入了几乎所有的NLP项目,包括谷歌搜索。BERT不仅指模型体系结构,还指经过训练的模型本身,您可以[在这里免费下载和使用](https://github.com/google-research/bert)。谷歌的研究人员在一个庞大的文本语料库上对它进行了训练,它已经成为一种用于自然语言处理的通用模型。它可以扩展来解决一系列不同的任务,比如:文本摘要问答分类命名实体识别文本相似度攻击性信息/脏话检测理解用户的查询等等BERT证明,您可以在未标记的数据上建立非常好的语言模型,比如从Wikipedia和Reddit中提取的文本,并且这些大型的“基础”模型可以与特定领域的数据相适应,适用于许多不同的用例。最近,OpenAI创建的模型GPT-3生成真实文本的能力让人们大吃一惊。谷歌搜索去年推出的Meena是一个基于transformer的聊天机器人(akhem,对话代理),几乎可以就任何话题进行引人入胜的对话(其作者曾花了20分钟与Meena争论作为人类意味着什么)。Tansformer也在自然语言处理之外掀起了一股浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。

Others are asking
transformer详解
Transformer 是一种基于注意力机制的编码器解码器模型,其工作流程如下: 1. 输入嵌入:将每个单词映射为一个向量,即单词嵌入。例如,“I”映射为一个 512 维的向量。 2. 位置编码:由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器:输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制:捕捉单词间的依赖关系。 前馈神经网络:对 attention 的结果进行进一步编码。 4. 解码器:编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入:解码器最后一层的输出被映射为输出单词概率分布。 6. 生成:基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 最流行的基于 Transformer 的模型之一 BERT,是“来自 Transformer 的双向编码器表示”的缩写。它被谷歌的研究人员引入,很快就进入了几乎所有的 NLP 项目,包括谷歌搜索。BERT 不仅指模型体系结构,还指经过训练的模型本身,您可以在。谷歌的研究人员在一个庞大的文本语料库上对它进行了训练,它已经成为一种用于自然语言处理的通用模型,可以扩展来解决一系列不同的任务,比如: 文本摘要 问答 分类 命名实体识别 文本相似度 攻击性信息/脏话检测 理解用户的查询 Transformer 基于 2017 年发表的一篇名为《Attention Is All You Need》的论文。尽管 Transformers 之前的所有模型都能够将单词表示为向量,但这些向量并不包含上下文。单词的用法会根据上下文而变化。Transformer 模型由编码器和解码器组成。编码器对输入序列进行编码并将其传递给解码器,解码器解码相关任务的表示。编码组件是一堆相同数量的编码器。介绍 Transformers 的研究论文将六个编码器堆叠在一起。六不是一个神奇的数字,它只是一个超参数。编码器在结构上都是相同的,但具有不同的权重。 Transformer 不仅在自然语言处理领域表现出色,如 BERT、GPT3、Meena 等模型,还在自然语言处理之外掀起了一股浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。
2025-01-10
transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”。以下为您详细介绍其工作流程: 假设我们有一个英文句子“I am a student”需要翻译成中文。 1. 输入嵌入(Input Embeddings):首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制(MultiHead Attention):捕捉单词间的依赖关系。 前馈神经网络(FeedForward NN):对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 主要用于处理序列数据,包括现在最火的 NLP 任务。与之前的模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。它可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 GPT3、BERT、T5 等功能强大的自然语言处理(NLP)模型都是基于 Transformer 模型。如果您想在机器学习,特别是自然语言处理方面与时俱进,至少要对 Transformer 有一定的了解。
2025-01-10
如何深入浅出的讲解Transformer
Transformer 的工作流程可以通过一个简单的例子来解释,比如将英文句子“I am a student”翻译成中文: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,如将“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,让模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention)用于捕捉单词间的依赖关系,二是前馈神经网络(FeedForward NN)对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成单词“我”“是”等的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 此外,aaronxic 从自己实际入坑的经验出发,总结梳理了新手友好的 transformer 入坑指南,计划从以下五个方面进行介绍: 1. 算法 1:NLP 中的 transformer 网络结构。 2. 算法 2:CV 中的 transformer 网络结构。 3. 算法 3:多模态下的 transformer 网络结构。 4. 训练:transformer 的分布式训练。 5. 部署:transformer 的 tvm 量化与推理。 同时,aaronxic 还针对 perplexity 指标进行了介绍,会先从大家熟悉的 entropy 指标开始,逐步介绍针对自然语言的改进版 Ngram Entropy 指标,最后介绍基于此改进的 perplexity 指标。
2024-12-27
2. Transformer
Transformer 是自然语言处理领域中的一种重要模型架构。以下是一些与 Transformer 相关的内容: 在“皇子:LLM 经典论文速读版,看完感觉自己通透了”中,Transformer 是众多被讨论的模型之一,与 GPT1、BERT 等一同被提及。 在“Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】”中,从核心本质上看,Sora 是一个具有灵活采样维度的扩散变压器。 在“机器之心的进化/理解 AI 驱动的软件 2.0 智能革命”中,有众多与 Transformer 相关的参考资料,如“Attention Is All You Need”论文等。
2024-12-27
transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”。以下为您详细介绍其工作流程: 假设我们有一个英文句子“I am a student”需要翻译成中文。 1. 输入嵌入(Input Embeddings):首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制(MultiHead Attention):捕捉单词间的依赖关系。 前馈神经网络(FeedForward NN):对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 主要用于处理序列数据,包括现在最火的 NLP 任务。与之前的模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。它可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 GPT3、BERT、T5 等功能强大的自然语言处理(NLP)模型都是基于 Transformer 模型构建的。如果您想在机器学习,特别是自然语言处理方面与时俱进,对 Transformer 有一定的了解是很有必要的。
2024-12-27
transformer的原理
Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而不是像循环神经网络或卷积神经网络一样逐个位置处理。通过自注意力机制,模型可以根据输入序列中不同位置的重要程度,动态地分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为了使模型能够区分不同位置的词语,Transformer 模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常是基于正弦和余弦函数计算得到的固定向量,可以帮助模型学习到位置信息的表示。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可以缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可以加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 通过以上关键点,Transformer 模型能够有效地捕捉输入序列中的长距离依赖关系,并在各种序列到序列的任务中取得了优异的性能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-22