Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

新手如何学习 AI 路径

Answer

以下是为新手提供的学习 AI 的路径:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
    • 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。

Others are asking
用AI处理excle
关于用 AI 处理 Excel ,目前有以下几种工具和插件可以增强其数据处理和分析能力: 1. Excel Labs :这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot :微软推出的 AI 工具,整合了 Word 、 Excel 、 PowerPoint 、 Outlook 、 Teams 等办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析或格式创建等任务。 3. Formula Bot :提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI :支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-02
我是IT产品和项目经理,如何通过学习成为AI产品经理
要从 IT 产品和项目经理转变为 AI 产品经理,可以参考以下步骤: 1. 入门级:通过 WaytoAGI 等开源网站或相关课程了解 AI 概念,使用 AI 产品并动手实践应用搭建。 2. 研究级: 技术研究路径:对某一领域有认知,能根据需求场景选择解决方案,利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 商业化研究路径:熟悉传统互联网偏功能实现和偏商业运营的产品经理工作,最好能将两者结合。 3. 落地应用级:积累成功落地应用的案例,产生商业化价值。 AI 产品经理的岗位技能要求包括: 1. 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 3. 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 4. 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 5. 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 6. 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 7. 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 8. 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 9. 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 10. 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 11. 具有一定的编程基础,熟练使用 Python、Git 等工具。 总结来说,AI 产品经理要懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。同时,要关注场景、痛点、价值。
2025-02-02
如何从小白开始学习AI
以下是从小白开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-02
ai入门教学
以下是为您提供的 AI 入门教学: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、AI 绘画入门 如果您对 AI 绘画感兴趣,以下是从 0 入门的视频教程: 1. 🔥强烈推荐,学完变大神系列章节教学视频: 2. 第一节课:AI 绘画原理与基础界面 视频大纲:文章简单的介绍了 stable diffusion 这一 AI 绘画软件如何安装到本地,整体过程易上手,对于 AI 感兴趣的同学可以直接跟着视频学习 3. 第二节课:20 分钟搞懂 Prompt 与参数设置,您的 AI 绘画“咒语”学明白了吗? 4. 第三节课:打破次元壁!用 AI“重绘”照片和 CG 5. 第四节课:AI 绘画模型,“画风”自由切换 6. 第五节课:提高 AI 绘画分辨率的方式 7. 第六节课:LoRa|Hypernetwork 概念简析 8. 第七节课:定向修手修脸,手把手教您玩转局部重绘! 9. 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 10. 第九节课:LoRA 从原理到实践 11. 第十节课:零基础掌握 ControlNet! 七、关于海螺 AI 的 Prompt 教学 海螺 AI 具有以下特点: 1. 【能看懂图能听懂指令】MiniMax 视频模型不仅可以确识别用户上传的图片,并确保所生成视频在形象保持上与原输入图像高度一致,且光影、色调完美嵌入新场景的设定,为创作者提供连贯、深度创作的空间;在指令响应方面,还能理解超出图片内容之外的文本,解构指令框架和深层语义并在视频生成中整合,实现“所写即所见”。 2. 【不依靠特效模板的惊艳特效】:只依靠模型综合能力,就能实现最顶级的影视特效。每一位用户都能够在图像基础上充分发挥想象力,创作出丰富多变的电影级视频——CG 合成、场景变化、碎片化、拟人化等特效与玩法等你来体验。 3. 【细腻表情呈现提升感染力】人物 5 秒钟内实现从开怀大笑到掩面哭泣,表情控制力不输专业演员,让您的视频表达更能深入人心。 4. 【2000 字提示词更精准调控】近期,海螺 AI 视频同步上线了提示词优化功能即使在大家对特定的构图、氛围、动作或运镜没有特殊指定要求时,我们建议开启此功能,聪明的海螺 AI 会结合原始 Prompt 扩展视频的美学呈现。同时,对于更专业的创作者,我们开放 2000 字的提示词空间,让您的创作更加精准。 Prompt 是一把由您的灵感与创意构筑的钥匙,能够打开通往 AI 奇幻世界的大门。无论您是初次接触 AI 的新人,还是已经能够熟练使用 AI 赋能生产力的老手,通过清晰的结构和灵活的表达方式,都可以轻松掌握 Prompt 的编写技巧,实现“一个人+一个 AI=一个专业剧组”的科幻愿景。只要掌握一些小小的规则,人人都可以成为 AI 魔法师!
2025-02-02
我想学习怎么使用ai,prompt 以及如何用ai赋能
以下是关于如何学习使用 AI 和 prompt 以及如何用 AI 赋能的相关内容: 海螺 AI Prompt 教学: MiniMax 视频模型具有多种强大功能,如能识别用户上传的图片,生成与原图像高度一致且光影、色调完美嵌入新场景设定的视频,还能理解超出图片内容的文本并整合到视频生成中,同时依靠模型综合能力实现顶级影视特效,呈现细腻的人物表情,近期还上线了提示词优化功能,开放 2000 字的提示词空间。 Prompt 是打开通往 AI 奇幻世界的钥匙,掌握编写技巧,人人都可成为 AI 魔法师。 潘帅:手把手分享法律人如何用好 AI Prompt 篇: Prompt 指给人工智能系统提供的信息或问题,用来引导其产生特定回答或执行特定任务。 好的 Prompt 建议框架及格式包括 CRISPE:Capacity and Role(能力与角色)、Insight(洞察)、Statement(陈述)、Personality(个性)、Experiment(举例)。 例如,指定 AI 为专注于民商事法律领域的律师并赋予相关能力,提供案件背景信息和上下文,明确期望 AI 完成的任务,设定回答风格。 针对复杂问题可逐步深化和细化提问,先提出宽泛问题再根据回答进一步细化。 给 AI 提供参考和学习的内容,包括详细的操作指南、行业最佳实践、案例研究等,编写详细流程和 knowhow。 在 Prompt 中使用专业领域术语引导 AI 回答方向,如法律术语。 验证与反馈:大模型语料有滞后性,使用 AI 回答后要交叉验证,结合专业知识筛选和判断。 希望以上内容对您有所帮助。
2025-02-02
如何用AI开网店
以下是关于如何用 AI 开网店的一些信息: 在电子商务领域,AI 工具可整合到工作流程的多个部分。以下是一些相关应用和建议: 产品照片方面: 像这样的工具能帮助品牌创建吸引人的产品照片,比如将静态的连衣裙照片变成女人穿着裙子在花园行走的形象,未来还可能极度个性化,展示沙发在您公寓中的样子。 内容创作方面: 品牌创作的很多内容类型可通过 AI 提升。例如,可以编写经过 SEO 优化的产品描述。最终,有望仅通过描述期望的审美并点击按钮,就能创建完整的电商商店及市场营销材料。 选择制作网站的 AI 工具方面: 1. 明确网站目标(如个人博客、商业网站、在线商店)和功能需求。 2. 考虑预算,有些工具提供免费计划或试用版,但高级功能可能需付费订阅。 3. 选择符合自身技术水平、易用且能轻松管理网站的工具。 4. 确保工具提供足够的自定义选项,满足设计和功能需求。 5. 查看是否有足够的客户支持和学习资源(如教程、社区论坛)帮助解决问题。 本月出圈的 AI 应用: 1. 用自然语言对网页编程,实现各种操作。 浏览器插件: 安装向导:https://yiu45q2746h.feishu.cn/docx/UM5Idb3AVo5cQXxgu09cTCAOnye 2. 把输入文字自动翻译成多种语言后进行搜索(沉浸式翻译团队的新产品),网页应用:https://bilin.ai 3. AI Youtube 搜索和总结,并支持播放 Youtube 视频,突然走红,网页应用:https://www.jenova.ai 4. 302.ai 汇集全球顶级品牌的 AI 超市,网页应用:https://302.ai,GitHub:https://github.com/302ai 5. 陌生人闹钟,移动端应用:https://strangerbell.com
2025-02-02
有新手入门的系统课程吗
以下是为新手入门 AI 推荐的系统课程: 1. SD 从入门到大佬: 安装完 SD 后,可参考。 强烈推荐跟着 Nenly 同学的【B站 第一套 Stable Diffusion 系统课程】合集走一遍,大概 4 小时左右可掌握基础技能。此外,还有可选的图片版教程。 2. 新手学习 AI 的综合指南: 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支及联系。浏览入门文章,了解历史、应用和发展趋势。 开始学习之旅:在「」中有为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后要实践巩固,可在知识库分享实践作品和文章。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 3. 《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友: 第一阶段:迈出第一步,看书听课进社区。感受是要系统性学习,打好基础。 DAY1 2024.5.22 初步探索:May 认为初期会走弯路,B站 上一些介绍 ChatGPT 原理的分享,消费可看,系统性学习要看高质量内容。 DAY2 2024.5.23 加入 AI 社区:waytoAGI。May 评价这是宝藏社区,可参考,先看新手指引入门。
2025-02-01
我是一个ai新手 我该如何开始入门
对于 AI 新手入门,建议您采取以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-30
我是一个新手,不知道从何学起
对于新手学习 AI,建议您按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-25
新手使用,如何编写提示词
对于新手编写提示词,以下是一些要点和方法: 1. 基本语法:根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号。 2. 词语顺序:一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。大致顺序为。 3. 权重调整:可以使用括号人工修改提示词的权重,如:字符。 4. 关键词选择:关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。 5. 描述逻辑:通常的描述逻辑包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 6. 辅助工具和方法: 利用功能型辅助网站,如 http://www.atoolbox.net/ ,它可以通过选项卡的方式快速地填写关键词信息;https://ai.dawnmark.cn/ ,其每种参数都有缩略图可以参考,方便更加直观地选择提示词。 去 C 站(https://civitai.com/)里面抄作业,每一张图都有详细的参数,可点击下面的复制数据按钮,然后直接粘贴到正向提示词栏里。 对于星流一站式 AI 设计工具: 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 写好提示词的方法包括使用预设词组、保证提示词内容准确(包含人物主体、风格、场景特点、环境光照、画面构图、画质)、调整负面提示词、利用“加权重”功能让 AI 明白重点内容,还可使用辅助功能,如翻译功能、删除所有提示词、会员加速等。
2025-01-23
新手教程
以下是为新手提供的 AI 学习教程: 1. 动效画板新手教程:https://bytedance.larkoffice.com/wiki/XRyXwTeGniGKcqkFsPVcJKZ0nTd 2. Prompt 新手学习指南: 第一步:拥有一个大模型帐号,至少熟悉与之对话的方式。推荐: 第二步:阅读 OpenAI 的官方文档,包括 3. 新手学习 AI 的总体步骤: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解其主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后进行实践,尝试使用各种产品创作作品,在知识库分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2025-01-23
面向新手个人的AI应用培训课程
以下是为新手个人推荐的一些 AI 应用培训课程: 1. 微软的 AI 初学者课程: 作者/来源:微软 推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:👍🏻 2. AI for every one(吴恩达教程): 作者/来源:吴恩达 前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:👍🏻 3. 大语言模型原理介绍视频(李宏毅): 作者/来源:李宏毅 可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 4. 谷歌生成式 AI 课程: 作者/来源:谷歌 注:前 4 节课为入门课 目录: 5. ChatGPT 入门: 作者/来源:OpenAI 注册、登录、简单使用方法等 目录: 新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。 建议一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,你可以获得对 AI 在实际应用中表现的第一手体验,并激发你对 AI 潜力的认识。 此外,还有“90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包括: 1. Code AI 应用背景:智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 2. AI CODING 现状:AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。 3. 证件照应用案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。 4. AI 应用学习过程:创建 AI 应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-01-23
ai工具学习路径
以下是关于 AI 工具学习路径的相关内容: 基于 Agent 的创造者学习路径: 结合“一人公司”的愿景,未来的 AI 数字员工会以大语言模型为大脑,串联所有工具。创造者的学习方向是用大模型和 Agent 模式把工具串起来,着重关注创造能落地 AI 的 agent 应用。Agent 工程(基础版)如同传统软件工程学,有迭代范式: 1. 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。 2. 「任务」工具化:自动化每一个「任务」,形成一系列小工具,让机器能完成单一任务。 3. 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。 4. 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。 中学生学习 AI 的路径: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等生成工具,体验应用场景。探索百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解基本概念、发展历程、主要技术如机器学习、深度学习等,学习在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的编程竞赛、创意设计大赛等活动,尝试解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考对未来社会的影响,培养思考和判断能力。 基于 LLM 的 AI Agent 相关: 1. 行动模块(Action):AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。利用 LLM 的 zeroshot learning 和 fewshot learning 能力,通过描述工具功能和参数的 zeroshot demonstartion 或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。在面对复杂任务时,应先将其分解为子任务,然后组织和协调,这依赖于 LLM 的推理和规划能力以及对工具的理解。 2. 使用工具:学习使用工具的方法主要包括从 demonstartion 中学习和从 reward 中学习。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为。 3. 具身智能:在追求 AGI 的征途中,具身 Agent 正成为核心研究范式,强调将智能系统与物理世界紧密结合。与传统深度学习模型相比,LLMbased Agent 能够主动感知和理解物理环境并与其互动,进行决策并产生具身行动。
2025-02-02
ai工具学习路径
以下是关于 AI 工具学习路径的相关内容: 基于 Agent 的创造者学习路径: 结合“一人公司”的愿景,未来的 AI 数字员工会以大语言模型为大脑,串联所有工具。创造者的学习方向是用大模型和 Agent 模式把工具串起来,着重关注创造能落地 AI 的 agent 应用。Agent 工程(基础版)如同传统软件工程学,有迭代范式: 1. 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。 2. 「任务」工具化:自动化每一个「任务」,形成一系列小工具,让机器能完成单一任务。 3. 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。 4. 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。 中学生学习 AI 的路径: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等生成工具,体验应用场景。探索百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解基本概念、发展历程、主要技术如机器学习、深度学习等,学习在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的编程竞赛、创意设计大赛等活动,尝试解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考对未来社会的影响,培养思考和判断能力。 基于 LLM 的 AI Agent 相关: 1. 行动模块(Action):AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。利用 LLM 的 zeroshot learning 和 fewshot learning 能力,通过描述工具功能和参数的 zeroshot demonstartion 或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。在面对复杂任务时,应先将其分解为子任务,然后组织和协调,这依赖于 LLM 的推理和规划能力以及对工具的理解。 2. 使用工具:学习使用工具的方法主要包括从 demonstartion 中学习和从 reward 中学习。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为。 3. 具身智能:在追求 AGI 的征途中,具身 Agent 正成为核心研究范式,强调将智能系统与物理世界紧密结合。与传统深度学习模型相比,LLMbased Agent 能够主动感知和理解物理环境并与其互动,进行决策并产生具身行动。
2025-02-02
小白学习ai的路径
以下是为小白提供的学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还可以参考《雪梅 May 的 AI 学习日记》: 1. 适合纯 AI 小白,可先看左边的目录。 2. 学习模式是输入→模仿→自发创造。 3. 去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 4. 学习时间不是每天依次进行,有空的时候学习。 5. 保持良好的学习状态,能学多少算多少。 6. 学习资源的内容都是免费开源的。 YoYo 的学习心得: 1. 学习前状态:不理解 AI 和提示词工程,作为文科生不懂代码、英语差,注册尝试各种 AI 工具走了不少弯路。 2. 学习后现状:能搓多 Agent 的智能体,营销文案 demo,SQL 代码进阶学习应用,创建多个智能体,在公司中实践智能客服等。 3. 学习路径:关键词为“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”,学习路径如同主线+支线的游戏通关。 4. 个人感受:学不完,找到适合自己的就好,学以致用,通过学习分享不断填补知识的缝隙来成长。
2025-01-29
学习ai的路径
以下是新手学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-25
大模型的发展路径是什么样的
大模型的发展大致可以分为三个阶段: 1. 准备期:自 2022 年 11 月 30 日 ChatGPT 发布后,国内产学研迅速形成大模型共识。 2. 成长期:国内大模型数量和质量开始逐渐增长。 3. 爆发期:各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势。 在发展过程中,大模型主要有以下几类: 1. 原创大模型:这类模型稀少而珍贵,需要强大的技术积累、持续的高投入,风险较大,但一旦成功竞争力强。 2. 套壳开源大模型:利用现有资源快速迭代和改进,需要在借鉴中实现突破和创新。 3. 拼装大模型:将过去的小模型拼接在一起,试图通过整合已有资源来实现质的飞跃,但整体性能并非各部分简单相加。 此外,360 作为国内唯一又懂大模型又懂安全的双料厂商,提出以“模法”打败魔法的理念,打造专业的安全大模型,只依赖大模型本身的能力,在恶意流量分析和恶意邮件检测效果方面超越 GPT 4,并与 360 积累的工具结合,提升攻击事件的检测和发现能力。同时,企业在运用大模型时,要将好的知识和算法结合,从数据中提炼出真正的实战知识。
2025-01-20
学习路径
以下是系统学习 LLM 开发以及 AI 技术的学习路径: LLM 开发学习路径: 1. 掌握深度学习和自然语言处理基础:包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理中的词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理:熟悉 Transformer 模型架构及自注意力机制原理,掌握 BERT 的预训练和微调方法,阅读相关论文如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调:进行大规模文本语料预处理,掌握 LLM 预训练框架如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移,参考 HuggingFace 课程、论文及开源仓库等资源。 4. LLM 模型优化和部署:掌握模型压缩、蒸馏、并行等优化技术,进行模型评估和可解释性研究,实现模型服务化、在线推理、多语言支持等,运用相关开源工具如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习:结合行业场景进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态:关注顶会最新论文、技术博客等资源。 AI 技术学习路径: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 此外,在开始学习 AI 时,还需根据电脑的硬件情况和自身财力选择合适的方式,如本地部署、在线平台或配台电脑。必学、必看内容是基础课,主要解决环境问题和软件安装问题;建炉针对不同炼丹方式提供不同炼丹工具的安装教程;正式内容部分分为数据集预处理、模型训练以及模型调试及优化三个部分。
2025-01-15
如何通过学习AI,在杭州找到AI相关的工作?
以下是一些通过学习 AI 在杭州找到相关工作的建议: 1. 提升技能:学习主流的 AI 工具和技术,如 RAG 微调等。 2. 积累项目经验:可以通过参与类似杭州站的 AI 活动,如“AI 自媒体涨粉”“AI+东方哲学”“AI 赚钱实验室”等,分小组协作完成相关项目,积累实践经验。 3. 拓展人脉:参加杭州当地的 AI 相关社群或活动,结识像老李哥哥这样在杭州的行业人士,获取更多的信息和机会。 4. 关注行业动态:了解杭州 AI 行业的发展趋势和需求,针对性地提升自己的能力。 5. 准备优秀的作品:例如创作引人入胜的 AI 相关短视频等,展示自己的能力和成果。
2025-02-02
ai 编程学习
以下是关于 AI 编程学习的相关内容: 借助 AI 学习编程的关键: 打通学习与反馈循环,从“Hello World”起点开始,验证环境、建立信心、理解基本概念,形成“理解→实践→问题解决→加深理解”的学习循环。 AI 学编程的建议: 使用流行语言和框架,如 React、Next.js、TailwindCSS。 先运行再优化,小步迭代,一次解决一个小功能。 借助 AI 生成代码后请求注释或解释,帮助理解代码。 遇到问题三步走:复现、精确描述、回滚。要明确 AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。 中学生学习 AI 的建议: 从编程语言入手学习,例如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术(机器学习、深度学习等),以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 总之,无论是借助 AI 学习编程还是中学生学习 AI,都需要从多个方面入手,全面系统地学习知识和技能,为未来的发展做好准备。
2025-02-02
我是个小白,我如何开始学习比较好
对于小白来说,开始学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式。 此外,根据电脑的硬件情况和自身财力选择合适的开始方式: 1. 本地部署:如果电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度非常慢,因此不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署。强烈建议在配有 N 卡的 Windows 电脑上进行。 2. 在线平台:对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 不建议一上来就配主机,玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 先验经验方面,需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白。课程大约 70 80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示。 必学、必看内容是基础课,主要是为了解决环境问题和软件安装不上的问题;建炉是针对不同炼丹方式提供了不同的炼丹工具的安装教程;正式的内容部分分为了数据集预处理、模型训练以及模型调试及优化三个部分。 小白的第一课是读文档,若没看懂,可使用提示词让 GPT 换种说法解释或举例。可以点击链接查看对话原文,顶部的问题可以复制,然后作为 prompt 自己去提问来自测是否真的读懂。下一节会带来 prompt 小白系列课程(二)如何开始练习有效提问。
2025-02-02