Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai工具学习路径

Answer

以下是关于 AI 工具学习路径的相关内容:

基于 Agent 的创造者学习路径: 结合“一人公司”的愿景,未来的 AI 数字员工会以大语言模型为大脑,串联所有工具。创造者的学习方向是用大模型和 Agent 模式把工具串起来,着重关注创造能落地 AI 的 agent 应用。Agent 工程(基础版)如同传统软件工程学,有迭代范式:

  1. 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。
  2. 「任务」工具化:自动化每一个「任务」,形成一系列小工具,让机器能完成单一任务。
  3. 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。
  4. 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。

中学生学习 AI 的路径

  1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。
  2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等生成工具,体验应用场景。探索百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。
  3. 学习 AI 基础知识:了解基本概念、发展历程、主要技术如机器学习、深度学习等,学习在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:参加学校或社区组织的编程竞赛、创意设计大赛等活动,尝试解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考对未来社会的影响,培养思考和判断能力。

基于 LLM 的 AI Agent 相关

  1. 行动模块(Action):AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。利用 LLM 的 zero-shot learning 和 few-shot learning 能力,通过描述工具功能和参数的 zero-shot demonstartion 或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。在面对复杂任务时,应先将其分解为子任务,然后组织和协调,这依赖于 LLM 的推理和规划能力以及对工具的理解。
  2. 使用工具:学习使用工具的方法主要包括从 demonstartion 中学习和从 reward 中学习。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为。
  3. 具身智能:在追求 AGI 的征途中,具身 Agent 正成为核心研究范式,强调将智能系统与物理世界紧密结合。与传统深度学习模型相比,LLM-based Agent 能够主动感知和理解物理环境并与其互动,进行决策并产生具身行动。
Content generated by AI large model, please carefully verify (powered by aily)

References

0. 学习路径: 成为基于Agent的创造者

结合我们“一人公司”的愿景,我们需要大量的智能体(数字员工)替我们打工.而未来的AI数字员工,会以大语言模型为大脑,串联所有已有的工具和新造的AI工具.@罗文:数字员工(agent)=学历(大模型)+察言观色(观察)+逻辑思维(推理)+执行(SOP)创造者的学习也依照这个方向,用大模型和Agent模式把工具串起来,着重关注在创造能落地AI的agent应用.大模型的开发研究和演进,就交给学术界和大厂吧.😄[heading2]Agent工程(基础版)[content]如同传统的软件工程学,Agent工程也有一个迭代的范式:1.梳理流程:梳理工作流程SOP,并拆解成多个单一「任务」和多个「任务执行流程」.2.「任务」工具化:自动化每一个「任务」,形成一系列的小工具,让机器能完成每一个单一任务.3.建立规划:串联工具,基于agent框架让bot来规划「任务执行流程」.4.迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的Agent.[heading2]数字员工“进化论”[content]itao:《从copilot到Agent,从实习到转正,从副驾到主驾》--到底是固化流程,还是让AI自主思考,需要在对AI能力基础上作出妥协和平衡.

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

AI-Agent系列(一):智能体起源探究

理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

Others are asking
CAD 与AI
以下是关于 CAD 与 AI 的相关信息: 用于画 CAD 图的 AI 工具: 存在一些可辅助或自动生成 CAD 图的 AI 工具和插件,特别是在设计和工程领域。例如: 1. CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入自动生成 3D 模型。 5. 主流 CAD 软件中的生成设计工具:如 Autodesk 系列、SolidWorks 等,可根据设计目标和约束条件自动产生多种方案。 获取 AI 生成 CAD 图相关资料的途径: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索。 2. 专业书籍:查找相关专业书籍了解应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台的课程,在 YouTube 等平台查找教程和演示视频。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等,与专业人士交流学习。 5. 开源项目和代码库:探索 GitHub 等开源平台上的相关项目,如 OpenAI 的 GPT3、AutoGPT 等在 CAD 设计中的应用。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用。 Chain of Density(CoD): CoD 可在多个领域指导 AI 生成有结构和针对性的内容,例如: 1. 教育工作者指导 AI 生成课程大纲。 2. 技术文件撰写。 3. 剧本或故事创作。 4. 商业策略规划。 5. 游戏设计。 6. 医疗诊断。 7. 法律咨询。 8. 产品开发。 这些例子显示了 CoD 在多种不同场景中的潜在应用。
2025-02-02
如何通过学习AI,在杭州找到AI相关的工作?
以下是一些通过学习 AI 在杭州找到相关工作的建议: 1. 提升技能:学习主流的 AI 工具和技术,如 RAG 微调等。 2. 积累项目经验:可以通过参与类似杭州站的 AI 活动,如“AI 自媒体涨粉”“AI+东方哲学”“AI 赚钱实验室”等,分小组协作完成相关项目,积累实践经验。 3. 拓展人脉:参加杭州当地的 AI 相关社群或活动,结识像老李哥哥这样在杭州的行业人士,获取更多的信息和机会。 4. 关注行业动态:了解杭州 AI 行业的发展趋势和需求,针对性地提升自己的能力。 5. 准备优秀的作品:例如创作引人入胜的 AI 相关短视频等,展示自己的能力和成果。
2025-02-02
我是一个小白,想画一个卫生间结构的CAD图,请问用什么AI工具能实现?
对于您想画一个卫生间结构的 CAD 图,以下是一些可以辅助您的 AI 工具: 1. CADtools 12:这是一个 Adobe Illustrator 插件,为 AI 添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:这是 Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能够帮助您创建复杂的几何形状和优化设计。 3. nTopology:这是一款基于 AI 的设计软件,可以帮助您创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:这是一款基于 AI 的 CAD 软件,可以根据您输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,这些工具可以根据您输入的设计目标和约束条件自动产生多种设计方案。 需要注意的是,这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议您先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。 关于 AI 生成 CAD 图的相关资料,您可以参考以下几个方面: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库进行搜索。 2. 专业书籍:查找与 AI 在 CAD 领域相关的专业书籍。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程,在 YouTube 等视频平台上查找教程和演示视频。 4. 技术论坛和社区:加入相关的技术论坛和社区,如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等,与其他专业人士交流和学习。 5. 开源项目和代码库:探索 GitHub 等开源平台上的 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等 AI 模型在 CAD 设计中的应用。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例。 在学习和研究 AI 生成 CAD 图的过程中,了解相关的基础知识和技术细节是非常重要的。通过阅读学术论文、参加在线课程、观看教程视频和交流学习,您可以逐步掌握 AI 在 CAD 领域的应用和实现。随着 AI 技术的不断发展,AI 在 CAD 设计中的应用将会越来越广泛,为设计师和工程师提供更多的辅助和支持。
2025-02-02
用AI可以画CAD图?
是的,存在一些 AI 工具和插件可以辅助或自动生成 CAD 图。以下为您列举部分相关工具: 1. CADtools 12:这是一个 Adobe Illustrator(AI)插件,为 AI 添加了 92 个绘图和编辑工具,涵盖图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能帮助创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,可根据输入的设计目标和约束条件自动产生多种设计方案。 这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。 此外,在软件架构设计中,绘制逻辑视图、功能视图和部署视图也有一些可用的 AI 工具和传统工具,如: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,与 Archi 工具一起使用,提供图形化界面创建 ArchiMate 模型,支持逻辑视图创建。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2025-02-02
AI外贸智能获客
AI 在外贸智能获客方面,可借鉴以下落地场景: 在营销赛道: 1. AI 辅助“市场营销”和“新媒体运营”,包括汽车与热点营销结合、用户画像预测、营销内容创作、内容审核以及用户评论回复,还能“一键生图”,但控制出图质量是难点和技术活。 2. AI 提升“销售体验”,引导“留资或下单”,例如为车主提供智能“试驾”促进转化,通过虚拟试驾或演示激发用户兴趣并引导留资;提供“金牌销售”智能导购,像懂行、懂产品、懂用户的金牌销售一样挖掘需求和个性给出买车建议;通过互动“问答游戏”“热点事件”“用户性格”等了解客户真实用车场景、需求和性格,为其推荐合适车型刺激购买下单。 3. AI 提升“销售能力”(专业知识/销售话术),基于汽车销售场景和环节自动出题让用户答题,最后得分评估并给出建议。思考:可复制到其他学习类场景,不仅是选择题形式,也可增加“对话”或者“情景模拟”形式,如 AI 扮演客户进行销售对练,包括刁难、不信任等情况。 在中小企业利用人工智能(AI)进行转型提升市场营销效果方面: 1. 目标市场分析是利用人工智能(AI)工具深入分析市场,准确识别目标客户群体并制定相应营销策略。首先使用 AI 工具进行市场细分,通过分析市场数据准确识别和细分目标客户群体,选择能处理复杂数据集并提供深入洞察的 AI 工具,如机器学习模型、数据分析软件等,收集广泛市场数据包括消费者行为、购买历史、社交媒体互动等,基于 AI 分析结果将市场细分为不同客户群体,每个群体具有独特需求和行为特征。 2. 基于 AI 分析结果定制化营销策略,根据目标市场细分结果制定更个性化和有效的营销策略,针对每个细分市场群体特征制定特定营销策略,如定制化广告内容、促销活动和沟通方式,执行定制化营销策略并根据市场反馈和销售数据调整,持续监测营销活动效果如参与度、转化率等评估策略有效性,定期更新市场数据确保营销策略基于最新市场洞察,根据新数据分析和市场反馈不断优化和调整营销策略。通过采用目标市场分析,中小企业能更精准识别和理解潜在客户,制定更有效营销策略,提高营销活动的 ROI,增强企业与客户联系,提升品牌形象和市场份额。
2025-02-02
AI的发展现在到达一个什么程度
目前 AI 的发展呈现出以下特点和程度: 1. 在通用人工智能(AGI)方面,尚未取得巨大进展,但一直在努力接近这一目标。AGI 分为五个等级,分别是具备基本对话能力的聊天机器人、具备人类推理水平的推理者、能执行全自动化业务但仍需人类参与的智能体、能够协助人类完成新发明的创新者以及能够自动执行组织全部业务流程的组织。 2. 弱人工智能(ANI)得到了巨大发展,在智能音箱、网站搜索、自动驾驶、工厂与农场应用等领域有广泛应用。 3. 机器学习中的监督学习近期快速发展,这得益于现有数据的快速增长、神经网络规模的发展以及算力的快速发展。 4. 数据对于 AI 至关重要,包括数据集的定义、获取数据的方式(手动标注、观察行为、网络下载)、使用数据的方法以及数据的分类(结构化数据和非结构化数据)。 5. 在大模型方面,开源大模型爆发,未来 AGI 竞争的关键在于云端超级大模型,同时通用大模型也遇到了瓶颈,如算力和知识沉淀等问题。
2025-02-02
ai工具学习路径
以下是关于 AI 工具学习路径的相关内容: 基于 Agent 的创造者学习路径: 结合“一人公司”的愿景,未来的 AI 数字员工会以大语言模型为大脑,串联所有工具。创造者的学习方向是用大模型和 Agent 模式把工具串起来,着重关注创造能落地 AI 的 agent 应用。Agent 工程(基础版)如同传统软件工程学,有迭代范式: 1. 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。 2. 「任务」工具化:自动化每一个「任务」,形成一系列小工具,让机器能完成单一任务。 3. 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。 4. 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。 中学生学习 AI 的路径: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等生成工具,体验应用场景。探索百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解基本概念、发展历程、主要技术如机器学习、深度学习等,学习在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的编程竞赛、创意设计大赛等活动,尝试解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考对未来社会的影响,培养思考和判断能力。 基于 LLM 的 AI Agent 相关: 1. 行动模块(Action):AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。利用 LLM 的 zeroshot learning 和 fewshot learning 能力,通过描述工具功能和参数的 zeroshot demonstartion 或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。在面对复杂任务时,应先将其分解为子任务,然后组织和协调,这依赖于 LLM 的推理和规划能力以及对工具的理解。 2. 使用工具:学习使用工具的方法主要包括从 demonstartion 中学习和从 reward 中学习。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为。 3. 具身智能:在追求 AGI 的征途中,具身 Agent 正成为核心研究范式,强调将智能系统与物理世界紧密结合。与传统深度学习模型相比,LLMbased Agent 能够主动感知和理解物理环境并与其互动,进行决策并产生具身行动。
2025-02-02
小白学习ai的路径
以下是为小白提供的学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还可以参考《雪梅 May 的 AI 学习日记》: 1. 适合纯 AI 小白,可先看左边的目录。 2. 学习模式是输入→模仿→自发创造。 3. 去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 4. 学习时间不是每天依次进行,有空的时候学习。 5. 保持良好的学习状态,能学多少算多少。 6. 学习资源的内容都是免费开源的。 YoYo 的学习心得: 1. 学习前状态:不理解 AI 和提示词工程,作为文科生不懂代码、英语差,注册尝试各种 AI 工具走了不少弯路。 2. 学习后现状:能搓多 Agent 的智能体,营销文案 demo,SQL 代码进阶学习应用,创建多个智能体,在公司中实践智能客服等。 3. 学习路径:关键词为“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”,学习路径如同主线+支线的游戏通关。 4. 个人感受:学不完,找到适合自己的就好,学以致用,通过学习分享不断填补知识的缝隙来成长。
2025-01-29
学习ai的路径
以下是新手学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-25
大模型的发展路径是什么样的
大模型的发展大致可以分为三个阶段: 1. 准备期:自 2022 年 11 月 30 日 ChatGPT 发布后,国内产学研迅速形成大模型共识。 2. 成长期:国内大模型数量和质量开始逐渐增长。 3. 爆发期:各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势。 在发展过程中,大模型主要有以下几类: 1. 原创大模型:这类模型稀少而珍贵,需要强大的技术积累、持续的高投入,风险较大,但一旦成功竞争力强。 2. 套壳开源大模型:利用现有资源快速迭代和改进,需要在借鉴中实现突破和创新。 3. 拼装大模型:将过去的小模型拼接在一起,试图通过整合已有资源来实现质的飞跃,但整体性能并非各部分简单相加。 此外,360 作为国内唯一又懂大模型又懂安全的双料厂商,提出以“模法”打败魔法的理念,打造专业的安全大模型,只依赖大模型本身的能力,在恶意流量分析和恶意邮件检测效果方面超越 GPT 4,并与 360 积累的工具结合,提升攻击事件的检测和发现能力。同时,企业在运用大模型时,要将好的知识和算法结合,从数据中提炼出真正的实战知识。
2025-01-20
学习路径
以下是系统学习 LLM 开发以及 AI 技术的学习路径: LLM 开发学习路径: 1. 掌握深度学习和自然语言处理基础:包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理中的词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理:熟悉 Transformer 模型架构及自注意力机制原理,掌握 BERT 的预训练和微调方法,阅读相关论文如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调:进行大规模文本语料预处理,掌握 LLM 预训练框架如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移,参考 HuggingFace 课程、论文及开源仓库等资源。 4. LLM 模型优化和部署:掌握模型压缩、蒸馏、并行等优化技术,进行模型评估和可解释性研究,实现模型服务化、在线推理、多语言支持等,运用相关开源工具如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习:结合行业场景进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态:关注顶会最新论文、技术博客等资源。 AI 技术学习路径: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 此外,在开始学习 AI 时,还需根据电脑的硬件情况和自身财力选择合适的方式,如本地部署、在线平台或配台电脑。必学、必看内容是基础课,主要解决环境问题和软件安装问题;建炉针对不同炼丹方式提供不同炼丹工具的安装教程;正式内容部分分为数据集预处理、模型训练以及模型调试及优化三个部分。
2025-01-15
1.1 AGI学习路径
以下是关于 AGI 学习路径的相关内容: YoYo 在通往 AGI 的学习之路上有以下心得: 学习前状态:不理解 AI 和提示词工程,作为文科生不懂代码且英语差,在学习前注册尝试各种 AI 工具走了不少弯路,对 ChatGPT 的认识仅限于日常问答和 SQL 学习交互,能支持工作数据提取。 学习后现状:可以搓多 Agent 的智能体,但需要进修 Python 搓更多智能体;进行了营销文案 demo、SQL 代码进阶学习应用;创建了 3 个图像流智能体和 2 个 Agent 智能体玩具;在公司中实践了智能客服从创建到应用的过程,实现企业微信机器人问答的基本功能;进行了学习 Dr.kown 的尝试实践和图像流的尝试以及企业智能体实践。 在 AGI 的学习路径方面,关键词包括:少就是多、先有个初识、目录索引推荐、兴趣最重要、先动手。学习路径如同游戏通关,有主线和支线。个人感受是学不完,找到适合自己的就好,学以致用,通过学习分享不断填补知识的缝隙来成长。 此外,“通往 AGI 之路”是一个致力于人工智能学习的中文知识库和社区平台,为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面。由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等,还定期组织活动。其品牌 VI 融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性。
2025-01-15
请推荐一款,可以快速生成电商服装模特的ai工具
以下为您推荐几款可快速生成电商服装模特的 AI 工具: 1. Stable Diffusion:如果您要开淘宝网店,可借助它初步制作展示商品。比如卖绿色淑女裙,先真人穿衣服拍照,处理好照片,选好 realisitic 真人照片风格的底模,再根据不同平台换头,通过图生图下的局部重绘选项卡涂抹替换部分,并设置好 prompts&parameters。 2. ComfyUI:这个工作流适用于电商服饰行业的换装、虚拟试穿等场景。首先生成适合服装的模特,可抽卡抽到满意的模特,加入 Redux 模型,强度不用太高,让提示词生效。然后进行高精度的换装,先预处理拼出 mask,再重绘 mask 区域。 3. 达摩院:支持虚拟换装、姿态编辑,您可以直接在 https://damovision.com/?spm=5176.29779342.d_appmarket.6.62e929a4w3xGCR 进行测试。
2025-02-02
适合处理亚马逊电商图片的ai工具
目前在处理亚马逊电商图片方面,常见的 AI 工具包括 Adobe Photoshop 的 AI 功能、Canva 等。Adobe Photoshop 的 AI 功能可以帮助您进行图像的优化、修复和创意处理。Canva 则提供了丰富的模板和设计元素,方便您快速制作吸引人的电商图片。但具体选择哪种工具,还需根据您的具体需求和使用习惯来决定。
2025-02-02
视频中的人物和背景替换,用什么工具
以下是一些可用于视频中人物和背景替换的工具及相关流程: ComfyUI 工作流: 前景处理: 使用 SAM 之前的版本来分割视频背景。 根据实际情况调整提示词和阈值。 移除背景后,使用图像遮罩复合生成灰色背景的图像批次,以帮助柔化前景对象(如人物)的边缘,减少锯齿或硬边缘的视觉效果,为后续和背景融合时过渡更自然顺滑。 在网盘里可以找到对应的模型,下载后按文件夹目录地址放置。 背景:背景部分可以是图片或者视频,为了有前后的视觉效果,可以添加一个图像的模糊,让生成的视频有种景深的效果。 边缘的处理: 核心是优化和改善前景对象的边缘,使其能够与新背景无缝融合,同时保持前景细节的完整性和自然性。 通过遮罩模糊生长(growMaskWithBlur),调整扩展和模糊半径来控制边缘的遮罩。 【SD】工作流: GroundingDINO 模型分割:当需要更精确的蒙版,如人物的眼睛或身上的配饰等,可使用 segment anything 中的 GroundingDINO。启用 GroundingDINO 时,AI 会自动下载模型,也可去云盘下载放到指定文件目录下。在检测提示词中输入相关内容,AI 可自动检测并设置蒙版,还能通过预览箱体得到编号选择调整单一部分。 希望以上内容对您有所帮助。
2025-02-02
有什么工具可以把英文音频转为中文音频?
以下工具可以将英文音频转为中文音频:Whisper。它和 llama 类似,采用 make 命令编译,之后去 ggerganov/whisper.cpp下载量化好的模型,然后转换音频即可。目前 Whisper 只接受 wav 格式,可以用 ffmpeg 进行转化。输出的 srt 文件如下所示: |Size|Parameters|Englishonly model|Multilingual model|Required VRAM|Relative speed| ||||||| |tiny|39 M|tiny.en|tiny|~1 GB|~32x| |base|74 M|base.en|base|~1 GB|~16x| |small|244 M|small.en|small|~2 GB|~6x| |medium|769 M|medium.en|medium|~5 GB|~2x| |large|1550 M|N/A|large|~10 GB|1x| 一般来说,对于英文音频,small 模型通常就足够了,但如果是中文音频,最好使用最大的模型。
2025-02-02
ai 编程学习
以下是关于 AI 编程学习的相关内容: 借助 AI 学习编程的关键: 打通学习与反馈循环,从“Hello World”起点开始,验证环境、建立信心、理解基本概念,形成“理解→实践→问题解决→加深理解”的学习循环。 AI 学编程的建议: 使用流行语言和框架,如 React、Next.js、TailwindCSS。 先运行再优化,小步迭代,一次解决一个小功能。 借助 AI 生成代码后请求注释或解释,帮助理解代码。 遇到问题三步走:复现、精确描述、回滚。要明确 AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。 中学生学习 AI 的建议: 从编程语言入手学习,例如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术(机器学习、深度学习等),以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 总之,无论是借助 AI 学习编程还是中学生学习 AI,都需要从多个方面入手,全面系统地学习知识和技能,为未来的发展做好准备。
2025-02-02
我是个小白,我如何开始学习比较好
对于小白来说,开始学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式。 此外,根据电脑的硬件情况和自身财力选择合适的开始方式: 1. 本地部署:如果电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度非常慢,因此不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署。强烈建议在配有 N 卡的 Windows 电脑上进行。 2. 在线平台:对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 不建议一上来就配主机,玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 先验经验方面,需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白。课程大约 70 80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示。 必学、必看内容是基础课,主要是为了解决环境问题和软件安装不上的问题;建炉是针对不同炼丹方式提供了不同的炼丹工具的安装教程;正式的内容部分分为了数据集预处理、模型训练以及模型调试及优化三个部分。 小白的第一课是读文档,若没看懂,可使用提示词让 GPT 换种说法解释或举例。可以点击链接查看对话原文,顶部的问题可以复制,然后作为 prompt 自己去提问来自测是否真的读懂。下一节会带来 prompt 小白系列课程(二)如何开始练习有效提问。
2025-02-02
怎么学习运用在运营短视频ai
以下是关于学习运用在运营短视频 AI 的一些建议: 一、了解 AI 基本概念 首先,建议阅读相关资料熟悉 AI 的术语和基础概念,了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在相关的学习路径中,您可以找到一系列为初学者设计的课程,这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。特别建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、在短视频运营中的应用 1. 特效制作:如利用 AE 软件,通过图层软件抠元素加插件做特效,如利用 auto field 自动填充工具,轨道遮罩功能让图层按特定形状变化等。还可以用 runway 生成烟花爆炸素材,结合 AE 的图层混合模式、遮罩等功能实现特效可控的画面。 2. 内容处理:用内容识别填充功能处理视频画面,如抹掉入镜的人;从素材网站获取粒子素材为画面添加氛围感。 3. 学习途径:可在 B 站找丰富的 AE 软件入门课程自学,也可从包图网下载工程文件学习。通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习 AE,还可参考模板。 需要注意的是,AI 出现后,AE 的使用有所减少,有些动效可用 AI 完成。
2025-02-02
怎么学习ai提问
以下是关于学习 AI 提问的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,可找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 对于中学生学习 AI,建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等)。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-02