Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

SD曝显存

Answer

在使用 SD 进行超大尺寸绘制时,直接调分辨率绘制超高分辨率的图片(如 10000x768 的清明上河图)通常会爆显存。正常尺寸设置最高到 2048,无法直接设置 10000 的宽度。解决方法是先在 PS 中设置所需尺寸的画布并保存为 jpg 图片,然后将图片放入 ControlNet 中,点击右下角箭头将尺寸信息发送到生成设置,填入正反向提示词,并启用 Tiled Diffusion 插件(方案选择 Mixture of Diffusers)防止接缝产生。

在 ComfyUI 中,模型的安装部署方面,FLUX 模型建议选择 dev 版本,显卡可以的用 fp16,显卡不够用的选 fp8,模型下载后放入 ComfyUI/models/unet/文件夹中。若爆显存,“UNET 加载器”节点中的 weight_dtype 可设置为 fp8 降低显存使用量,但可能稍降质量。clip 模型(t5xxl_fp16.safetensors 和 clip_l.safetensors)放在 ComfyUI/models/clip/文件夹,也可用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率。Vae 模型下载后放入 ComfyUI/models/vae 文件夹。

在生成过程中,ComfyUI 处理 SDXL 模型比 webUI 更有效率。例如,ComfyUI 生成过程中显存占用率为 7 - 9GB,每次生成耗时 13 - 15s;webUI 显存占用率为 8 - 11GB,每次生成耗时 25s。此外,还可对 SDXL 进行风格控制,添加【新建节点】-【实用工具】-【SDXL Promot Styler Advanced】节点,通过右键增加输入点将文本提示词赋予 base 和 refiner 并切换风格。

Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】 超大尺寸绘制、分区控制,详解Tiled Diffusion & VAE插件功能

如果你想用SD来画一幅超高分辨率的图片,比如10000x768的清明上河图,直接调分辨率画是不太可能的,因为这样一定会爆显存。而且正常的尺寸设置,最高也就到2048了,没法设置出10000的宽度来。我们首先需要在PS中设置一个这么大尺寸的画布,然后保存成jpg图片。然后将图片放入ControlNet当中,点击右下角的箭头,将当前图片尺寸信息发送到生成设置,可以看到,我们需要的尺寸就设置好了。填入正反向提示词,这里我使用了一个中国风lora。正向:masterpiece,best quality,qingming riverside map,painting,guofeng,chinese style,<lora:Chinese style illustration v2:1>,反向:lowres,bad anatomy,bad hands,text,error,missing fingers,extra digit,fewer digits,cropped,worst quality,low quality,normal quality,jpeg artifacts,signature,watermark,username,blurry分别启用这两个插件,Tiled Diffusion中的方案选择Mixture of Diffusers,这一种方案可以协调分块扩散过程的混合方式,适合用来直接生成大图,防止接缝的产生。

ComfyUI FLUX

FLUX.1[dev]FLUX.1[dev fp8]FLUX.1[schnell],选一个.建议选择dev版本的,显卡可以的用fp16,显卡不够用的选fp8.模型下载后,放入,这个文件应该放在你的:ComfyUI/models/unet/文件夹中。如果爆显存了,“UNET加载器”节点中的weight_dtype可以控制模型中权重使用的数据类型,设置为fp8,这将使显存使用量降低一半,但可能会稍微降低质量.默认下的weight_type,显存使用比较大.[heading4]clip[content]t5xxl_fp16.safetensors和clip_l.safetensors,放在ComfyUI/models/clip/文件夹里面.https://huggingface.co/comfyanonymous/flux_text_encoders/tree/main可以使用t5xxl_fp8_e4m3fn.safetensors来降低内存使用率,但是如果你有超过32GB内存,建议使用fp16[heading4]Vae[content]下载后,放入ComfyUI/models/vae文件夹https://huggingface.co/black-forest-labs/FLUX.1-schnell/tree/main[heading3][heading3]T5(/t5xxl_fp16.safetensors)的这个clip,[content]原本是有一个输入输出的。就是有一半是应该空着的。会导致提示词被吞的情况,就是可能会有一半的提示词被吞掉了。所以短提示的效果会比较差。我们在训练flux或者sd3时候,应该尽量的去用长提示词或者自然语言。不要用短提示词。因为T5自带了50%的删标。

【ComfyUI】使用ComfyUI玩SDXL的正确打开方式

在生成过程中,显存的占用率为7-9GB。从后台可以看到,每一次生成的耗时在13-15s之间。我使用同样的参数来测试一下webUI。在生成过程中,显存的占用率为8-11GB。从后台可以看到,每一次生成的耗时在25s之间。可以看出,comfyui在处理sdxl的模型是,确实要比webui更有效率一些。可能有些朋友已经被这个节点绕得有点晕了,但是还没结束。接下来,我们再试一试sdxl的风格控制,添加【新建节点】-【实用工具】-【SDXL Promot Styler Advanced】节点。我们可以看到,在这个节点上有两套正负向提示词,分别对应着base和refiner。点击右键,分别增加g和l作为输入点。这样,我们就可以通过这一个节点将文本提示词分别赋予到base和refiner上,同时也把风格的切换加进了工作流当中。点击这里的【style】就可以看到各种风格了,不过都是英文的。我这里有一份中英文对照的表,大家也可以参考一下,一共105种风格,我会把它放在网盘里。选一个黏土风格进行测试,尺寸设置为1280*768,用时15.11。同样的参数,我在webui里跑了一下,用时3分33秒。

Others are asking
FLUX低显存怎么安装
如果您的显存较低,安装 FLUX 可以参考以下步骤: 1. NF4 模型下载: 链接:https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 放置位置:ComfyUI/models/checkpoint/中(不像其他 Flux 模型那样放置在 UNET 中) NF4 配套节点插件:git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git 2. GGUF 模型下载: 链接:Flux GGUF 模型:https://huggingface.co/city96/FLUX.1devgguf/tree/main GGUF 配套节点插件:GGUF 节点包:https://github.com/city96/ComfyUIGGUF 值得一提的是在最新版本的 ComfyUI 中,GGUF 的节点插件可以在 Manager 管理器中搜到下载安装,NF4 的配套节点插件则搜不到。 3. 对于 8G 以下显存的方案: flux1devbnbnf4.safetensors 放入 ComfyUI\\models\\checkpoints 文件夹内。 ComfyUI_c_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4 注:如果报错,请更新 BitsandBytes 库。下载放入解压后 ComfyUI\\custom_node 文件夹内,重启 ComfyUI,如果之前没更新,更新后再重启。 相关资源链接: BitsandBytes Guidelines and Flux:https://github.com/lllyasviel/stablediffusionwebuiforge/discussions/981 ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4 flux1devbnbnf4.safetensors:https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 注意使用精度优化的低配模型的话,工作流和原版是不一样的。自己改的话就是把上面官方的这个 fp8 的工作流,只需把底模的节点换成 NF4 的或者 GUFF 的即可。相关生态发展很快,有 Lora、Controlnet、IPadpter 相关生态建设非常速度,以及字节最近发布的 Flux Hyper lora 是为了 8 步快速生图。
2025-01-09
低显存版怎么安装
对于低显存版的安装,以下是相关步骤: 1. FLUX.1 低显存方案(8G 以下): 将 flux1devbnbnf4.safetensors 放入 ComfyUI\models\checkpoints 文件夹内。 下载 ComfyUI_c_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4 ,放入解压后 ComfyUI\custom_node 文件夹内。 注:如果报错,请更新 BitsandBytes 库,下载放入解压后 ComfyUI\custom_node 文件夹内,重启 ComfyUI,如果之前没更新,更新后再重启。 2. Dreambooth Extension for StableDiffusionWebUI: 在 SD Web UI 中转到“Extensions(扩展)”选项卡,选择“Available(可用)”子选项卡,选择“Load from:(从...加载)”以加载扩展列表,最后在 Dreambooth 条目旁边点击“install(安装)”。 安装完成后,必须完全重新启动 StableDiffusion WebUI。重新加载 UI 将无法安装所需的依赖项。 还需要更新版本的 diffusers,因为 SDWebUI 使用的是 0.3.0 版本,而 DB 训练需要>=0.10.0 版本。没有正确的 diffusers 版本会导致“UNet2DConditionModel”对象没有属性“enable_gradient_checkpointing”的错误消息,以及安全检查器警告。
2025-01-09
comy UI FLUX 低显存
ComfyUI FLUX 低显存运行的相关内容如下: 工作流: 目的是让 FLUX 模型能在较低的显存情况下运行。 分阶段处理思路: 先使用 Flux 模型在较低分辨率下进行初始生成以提高效率。 采用两阶段处理,先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用。 使用 SD 放大提升图片质量。 工作流的流程: 初始图像生成(Flux): UNETLoader:加载 flux1dev.sft 模型。 DualCLIPLoader:加载 t5xxl 和 clip_l 模型。 VAELoader:加载 fluxae.sft。 CLIPTextEncode:处理输入提示词。 BasicGuider 和 RandomNoise:生成初始噪声和引导。 SamplerCustomAdvanced:使用 Flux 模型生成初始图像。 VAEDecode:解码生成的潜在图像。 初始图像预览:PreviewImage 显示 Flux 生成的初始图像。 图像放大和细化(SDXL): CheckpointLoaderSimple:加载 SDXL 模型(fenrisxl_SDXLLightning.safetensors)。 UpscaleModelLoader:加载 RealESRGAN_x4.pth 用于放大。 VAELoader:加载 sdxl_vae.safetensors。 ImageSharpen:对初始图像进行锐化处理。 UltimateSDUpscale:使用 SDXL 模型和放大模型进行最终的放大和细化。 最终图像预览:PreviewImage 显示最终放大和细化后的图像。 FLUX 模型的选择: 用半精度 fp8 dev 版本(能用单精度 dev 版本的尽量用),也适合 fp8 的 T8 模型,降低对内存的占用。 记得把 weight dtype 也设置为 fp8,降低对显存的使用。 建议:先关闭高清放大部分,等跑出来效果满意的图片后,再开启放大。 ComfyUI 简介: 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更加精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候能清晰发现错误出在哪一步。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI
2025-01-08
在comyui中,使用flux1-dev模型24g显存够吗
在 ComfyUI 中使用 Flux1dev 模型,24G 显存是可以的,但建议内存尽量高于 32G 以避免意外情况的发生。如果您的显卡是 24G 或更高,右键 24G 那个 train_flux_24GLora 的文件。修改脚本路径和参数时,要注意底模路径、VAE 路径、数据集路径,还有下面的 clip 路径和 T5xxl 路径的正确填写。ae.safetensors 和 flux1dev.safetensors 的下载地址为:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b ,百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。最后下载 dev 的工作流: ,或者使用官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI 把工作流或图片拖拽到其中即可。
2024-11-12
在comyui中,使用flux1-dev模型需要多少显存
在 ComfyUI 中使用 flux1dev 模型所需的显存情况如下: 相关模型的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 对于 GPU 性能不足、显存不够的情况,底模可以使用 fp8 的量化版模型,下载地址为:https://huggingface.co/Kijai/fluxfp8/tree/main 。 低显存方案(8G 以下):flux1devbnbnf4.safetensors ,放入 ComfyUI\\models\\checkpoints 文件夹内,下载链接为 https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 。 此外,还提供了以下相关资源链接: BitsandBytes Guidelines and Flux :https://github.com/lllyasviel/stablediffusionwebuiforge/discussions/981 ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
2024-11-12
除了SD,有哪些方便快捷的网站可以用的?
以下是一些方便快捷的 AI 相关网站: 1. 吐司:https://tusiart.com/images/635511733697550450?post_id=635512498197535244&source_id=nzywoVHilkK7o_cqaH31xAh 2. 哩布:https://www.liblib.ai/ 3. 哩布哩布 AI:其在线 SD 界面和本地部署界面区别不大,每天有一百次生成次数,且已集成最新的 SDXL 模型。 4. Clipdrop:https://clipdrop.co/stablediffusion ,和 midjourney 的使用方法相似,每天免费 400 张图片,需排队,出四张图约二三十秒。 此外,还有一些 AI 视频相关的网站: 1. SVD:https://stablevideo.com/ ,对于景观更好用。 2. Morph Studio:https://app.morphstudio.com/ ,还在内测。 3. Heygen:https://www.heygen.com/ ,数字人/对口型。 4. Kaiber:https://kaiber.ai/ 5. Moonvalley:https://moonvalley.ai/ 6. Mootion:https://discord.gg/AapmuVJqxx ,3d 人物动作转视频。 7. 美图旗下:https://www.miraclevision.com/ 8. Neverends:https://neverends.life/create ,操作傻瓜。 9. Leiapix:https://www.leiapix.com/ ,可以把一张照片转动态。 10. Krea:https://www.krea.ai/ 11. Opusclip:https://www.opus.pro/ ,利用长视频剪成短视频。 12. Raskai:https://zh.rask.ai/ ,短视频素材直接翻译至多语种。 13. invideoAI:https://invideo.io/make/aivideogenerator/ ,输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频。 14. descript:https://www.descript.com/?ref=feizhuke.com 15. veed.io:https://www.veed.io/ ,自动翻译自动字幕。 16. clipchamp:https://app.clipchamp.com/ 17. typeframes:https://www.revid.ai/?ref=aibot.cn
2025-02-04
sd 的imagebrowser在哪下载
Stable Diffusion 的 ImageBrowser 插件可以通过以下方式下载: 因为该插件还没有收录到官方的插件列表当中,您可以到这个网址去下载:https://github.com/hnmr293/sdwebuicutoff ,或者是去作者的云盘链接下载。安装之后重启,就可以看到这个插件。 另外,大多数的模型都是在 Civitai(C 站)这个网站里面下载,网址为:https://civitai.com/ 。使用 C 站时需要科学上网,点击右上角的筛选按钮,在框框里面找到自己需要的模型类型。下载的模型保存位置如下: 大模型:存放在 SD 根目录的【……\\models\\Stablediffusion】文件夹。 Lora:存放在根目录下的相应文件夹。 VAE:存放在根目录的【……\\models\\VAE】文件夹。 如果不会科学上网,也可以去启动器的界面直接下载模型。下载的 Embedding 可以在 C 站通过右上角的筛选 Textual Inversion 找到,放在根目录下的 embeddings 文件夹里。
2025-01-23
SD模型
Stable Diffusion(SD)模型是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将文本输入到 SD 模型,经过一定迭代次数生成符合描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示重绘输入图片使其更符合描述,如在沙滩图片上添加“海盗船”。 输入的文本信息需通过“桥梁”CLIP Text Encoder 模型转换为机器数学信息。该模型作为 SD 模型中的前置模块,将输入文本编码生成 Text Embeddings 特征矩阵,用于控制图像生成。 目前 SD 模型使用的是中的 Text Encoder 模型,其只包含 Transformer 结构,由 12 个 CLIPEncoderLayer 模块组成,模型参数大小为 123M,输出 Text Embeddings 的维度为 77x768。 以下是相关资源获取方式: SD 模型权重:关注 Rocky 的公众号 WeThinkIn,后台回复“SD 模型”,可获得包含多种模型权重的资源链接。 SD 保姆级训练资源:关注 Rocky 的公众号 WeThinkIn,后台回复“SDTrain”,可获得包含数据处理、模型微调训练及基于 SD 的 LoRA 模型训练代码等全套资源。 Stable Diffusion 中 VAE、UNet 和 CLIP 三大模型的可视化网络结构图:关注 Rocky 的公众号 WeThinkIn,后台回复“SD 网络结构”,即可获得网络结构图资源链接。
2025-01-22
SD如何操作
以下是关于 SD 操作的相关内容: Stable Diffusion 中,Checkpoint 是最重要的模型,也是主模型,几乎所有操作都依托于它。主模型基于 Stable Diffusion 模型训练而来,有时被称为 Stable Diffusion 模型。主模型后缀一般为.ckpt 或者.safetensors,体积较大,一般在 2G 7G 之间。要管理模型,需进入 WebUl 目录下的 models/Stable diffusion 目录。 画出商用级别的高清大图操作简单,调整好放大倍率即可直接放大。其原理和其他图片放大原理相同,并非重绘,只是变清晰,缺失细节不会补全。 制作中文文字的思路: 将中文字做成白底黑字,存成图片样式。 使用文生图的方式,使用大模型真实系,输入关键词和反关键词,反复刷机得到满意效果。 可输出 C4D 模型,自由贴图材质效果。 若希望有景深效果,可打开 depth。 打开高清修复,分辨率 1024 以上,步数 29 60。
2025-01-09
sd 学习教程
以下是关于系统学习 Stable Diffusion 提示词的教程: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,为您推荐以下学习资源: 1. SD 从入门到大佬: Nenly 同学的视频合集(点我看合集):https://space.bilibili.com/1 。 想入门 SD 的同学可以在安装完 SD 后,参考 0.SD 的安装:https://qa3dhma45mc.feishu.cn/wiki/Ouiyw6v04iTJlmklDCcc50Jenzh 。 可选的一些图片版教程: 。 2. 第一期:上班的你: 。 。 。 。 。 。 。 。 。
2025-01-06
Midjourney+sd可以生成服装模特视频么
Midjourney 和 SD 可以用于生成服装模特视频。以下是一些常见的方法: 1. 方法 1【MJ 出图 + AI 视频软件】:使用 Midjourney 垫图➕描述出图,再去视频工具中转成视频。下载项里的深度图,打开 Midjourney 官网(https://www.midjourney.com/)上传深度图。局部重绘有难度,最终方式可以是分开画,比如先画个被关着的红衣服女孩,再画个二战德国士兵的背影,再合成后交给 MJ。 2. 方法 3【SD 出图 + AI 视频软件】:在 SD 的 controlnet 中上传原图,选择深度,文生图生成图片,再把生成好的图放在 AI 视频工具中进行视频生成。 同时,您还可以参考以下视频工具建议: 。另外,使用 Dreamina 图片生成功能(https://dreamina.jianying.com/aitool/image/generate)上传深度图,选择适应画布比例并填写描述,也可以实现深度图出图和出视频。
2025-01-06