Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

系统学习agent构建

Answer

以下是一些关于系统学习 Agent 构建的内容:

  • 一些 Agent 构建平台:
    • Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。
    • Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。
    • 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。
    • MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。
    • 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。
    • 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供环境感知和记忆功能,在处理高频工作场景表现出色。
  • 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤:
    • 规划:制定任务的关键方法,总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。
    • 实施:分步构建和测试 Agent 功能,在 Coze 上搭建工作流框架,设定每个节点的逻辑关系,详细配置子任务节点,并验证每个子任务的可用性。
    • 完善:全面评估并优化 Agent 效果,整体试运行 Agent,识别功能和性能的卡点,通过反复测试和迭代,优化至达到预期水平。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:有哪些好的Agent构建平台

以下是一些Agent构建平台:1.Coze:Coze是一个新一代的一站式AI Bot开发平台,适用于构建基于AI模型的各类问答Bot。它集成了丰富的插件工具,可以极大地拓展Bot的能力边界。2.Mircosoft的Copilot Studio:这个平台的主要功能包括外挂数据、定义流程、调用API和操作,以及将Copilot部署到各种渠道。3.文心智能体:这是百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。4.MindOS的Agent平台:允许用户定义Agent的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。5.斑头雁:这是一个2B基于企业知识库构建专属AI Agent的平台,适用于客服、营销、销售等多种场景。它提供了多种成熟模板,功能强大且开箱即用。6.钉钉AI超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。这使得它在处理高频工作场景如销售、客服、行程安排等方面表现更加出色。以上信息提供了关于6个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。内容由AI大模型生成,请仔细甄别

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法2.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性3.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法2.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性3.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。

Others are asking
agent
智能体(Agent)在人工智能和计算机科学领域是一个非常重要的概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分: 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆:包括短期记忆(所有的上下文学习都是利用模型的短期记忆来学习)和长期记忆(为 Agents 提供长时间保留和回忆无限信息的能力,通常通过利用外部向量存储和快速检索来实现)。 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 智能体可以根据其复杂性和功能分为以下几种类型: 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。
2025-01-29
RAG与agent
RAG(RetrievalAugmented Generation,检索增强生成)是一种方法,例如在餐饮生活助手的应用中,它能根据用户需求从大规模餐饮数据集中检索出最合适的餐厅并提供相关信息和服务。实现餐饮生活助手的 RAG 实战,需要将餐饮数据集转化为 LangChain 可识别和操作的数据源,并定义 LLM 的代理,让其根据用户问题提取核心信息和条件,形成标准查询语句检索数据源并生成答案。 Agent 是大模型的一个重要概念,被认为是大模型未来的主要发展方向。它可以通过为 LLM 增加工具、记忆、行动、规划等能力来实现。目前行业里主要使用 LangChain 框架将 LLM 与工具串接。例如在 RAG 基础上,Agent 给大模型提供了更多工具,如长期记忆(数据库工具),还在 prompt 层和工具层完成规划和行动等逻辑设计。 在大模型请求中,最大的两个变量是 Messages 和 Tools,两者组合形成整个 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。RAG 可以是向量相似性检索,放在 system prompt 里或通过 tools 触发检索。Action 触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互,没有 tool_calls 标记则循环结束。Multi Agents 则是通过更换 system prompt 和 tools 实现。
2025-01-28
购物推荐的aiagent 目前有好用的吗
以下是一些好用的购物推荐的 AI Agent: AutoGPT GUI:其 GUI 已开放 waitlist,可在 https://news.agpt.co/ 注册。 MULTI·ON plugin by MULTI·ON:今年 2 月开始使用,能在笔记本电脑上自动执行许多任务。现开发了 ChatGPT 插件,功能强大。链接:https://www.multion.ai/ ,演示:https://twitter.com/DivGarg9/status/1648394059483054081 。 BabyBeeAGI:由 Yohei 本人开发,有更强的任务管理等能力,但速度较慢,适合处理复杂任务。链接:https://replit.com/@YoheiNakajima/BabyBeeAGI?v=1 。 MiniAGI:基于 GPT3.5Turbo/4 的最小通用自主代理,保留简单实用功能,可执行多种任务,如订比萨。链接:https://github.com/muellerberndt/miniagi 。 此外,智谱的 AutoGLM 经过深度测试,展现出了较好的场景理解能力,如能准确区分“帮我买一杯咖啡”和“帮我买一包咖啡豆”并打开相应应用,但目前离好用还有一定距离,存在语音识别偏差、复杂界面操作稳定性待提升、只支持安卓等问题。 Cursor 虽然免费版只有 chat 功能,但其中的 Agent 功能只要给一个模糊指令,就会自动规划和解决问题。Cline 作为一个 AI 助手,能力有保障,长期霸榜 OpenRouter token 消耗榜,新版本还推出检查点功能。实际体验中,DeepSeekV3 和 Gemini 2.0 Flash Thinking 可作为不错的候选。
2025-01-26
如果我想让一个agent的回复的观点更鲜明,而非对一连串的侧面做分析,然后给出分散的建议, 如何做到?
要让一个智能体(agent)的回复观点更鲜明,而非分散地分析侧面和给出建议,您可以考虑以下几个方法: 1. 明确任务设定:在与智能体交互之前,清晰准确地定义任务目标和期望的回复形式,强调需要鲜明的观点表达。 2. 优化训练数据:确保用于训练智能体的数据集包含观点鲜明的示例,让智能体学习到这种表达模式。 3. 调整提示词:精心设计提示词,明确要求智能体给出直接、明确且鲜明的观点,避免模糊或宽泛的指令。 4. 引入奖励机制:在训练过程中,对观点鲜明的回复给予更高的奖励,激励智能体朝着这个方向优化。 5. 后处理和筛选:对智能体的初步回复进行后处理,筛选出观点鲜明的部分,或者对不够鲜明的部分进行修改和优化。
2025-01-26
新手小白,如何从0开始搭建AI Agent
对于新手小白从 0 开始搭建 AI Agent,以下是一些建议: 1. 规划阶段: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施阶段: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善阶段: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 此外,还需要了解一些关于 AI Agent 的基本概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括 Chain(通常一个 AI Agent 可能由多个 Chain 组成,一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量,大部分的 Chain 是大语言模型完成的 LLM Chain)、Router(可以使用一些判定,甚至可以用 LLM 来判定,然后让 Agent 走向不同的 Chain)、Tool(Agent 上可以进行的一次工具调用,例如对互联网的一次搜索,对数据库的一次检索)。 常见的 AI Agent 有 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本,配套的图片,以及每日朋友圈)。这些 Agent 每隔一段时间运行一次(默认 3 分钟),会分析期间的历史对话,变更人物关系、反感度等,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-01-23
如何解决agent幻觉问题
在大型语言模型(LLM)中,幻觉通常指模型生成不忠实、捏造、不一致或无意义的内容。幻觉主要分为两种类型: 1. 上下文内幻觉:模型输出应与上下文中的源内容一致。 2. 外部幻觉:模型输出应基于预训练数据集,与预训练数据中的知识相符。由于预训练数据集规模庞大,每次生成都去检索和识别冲突成本太高。若将预训练数据语料库视为世界知识的代表,应努力确保模型输出是事实的,且在不知答案时明确表示。 为避免幻觉,LLM 需做到: 1. 输出符合事实的内容。 2. 适用时承认不知道答案。 在 LLM 驱动的自主 Agents 中,启发式函数可决定轨迹是否低效或包含幻觉。低效规划指花费过长时间未成功的轨迹,幻觉指遇到一系列连续相同动作导致环境中出现相同观察。自我反思可通过向 LLM 展示示例创建,并添加到 Agents 的工作记忆中。在 AlfWorld 中,幻觉比低效规划更常见。 对于处理 ChatGPT 的“幻觉”,有以下经验: 1. 明确告诉它想要准确答案,无幻觉。 2. 改变 temperature 参数(如改到 0)或控制创造力水平。 3. 得到答案后,要求它为每个引用产生精确的引用和页面,以便交叉检查。
2025-01-22
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
如何构建企业AI知识库
构建企业 AI 知识库可以参考以下步骤: 1. 结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可以进行模型的 Finetuning(微调),以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。 2. 确定功能范围,包括编写【prompt】提示词,设定 Bot 的身份和目标。 3. 创建【知识库】: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 选择创建知识库路径,如个人空间知识库创建知识库。 支持的知识库文档类型包括本地文档、在线数据、飞书文档、Notion 等,可根据需求选择,如本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,便于自动切分数据。分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行相应操作。 在构建过程中,KnowHow 很重要,同时工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很关键。
2025-01-23
本地怎么构建知识库
以下是关于本地构建知识库的详细步骤和相关知识: 一、硬件配置要求 运行大模型需要较高的机器配置,个人玩家可能负担不起。 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 二、RAG 技术 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 是指检索增强生成(Retrieval Augmented Generation),当需要依靠不包含在大模型训练集中的数据时,通过以下 5 个过程实现: 1. 文档加载(Document Loading):从多种不同来源加载文档。LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化的数据、SQL 在内的结构化的数据,以及 Python、Java 之类的代码等。 2. 文本分割(Splitting):文本分割器把 Documents 切分为指定大小的块。 3. 存储:涉及将切分好的文档块进行嵌入(Embedding)转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 三、本地知识库搭建步骤 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后,会进入到其配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 测试对话:当上述配置完成之后,就可以跟大模型进行对话了。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可以联系作者或者加作者的免费知识星球(备注 AGI 知识库)。
2025-01-22
我能否借助开源社区力量构建高质量的 AI 数字人
您可以借助开源社区力量构建高质量的 AI 数字人。 构建数字人的躯壳有多种方式: 1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,代表是 Live2D Cubism。 2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高,代表是 UE、Unity、虚幻引擎 MetaHuman 等,但个人学习在电脑配置和学习难度上有一定门槛。 3. AIGC:省去建模流程直接生成数字人的展示图片,但存在算法生成的数字人很难保持 ID 一致性、帧与帧连贯性差等弊端。如果对人物模型真实度要求不高,可以使用,典型项目有 wav2lip、videoretalking 等。AIGC 还有直接生成 2D/3D 引擎模型的方向,但仍在探索中。 构建数字人的灵魂需要注意以下几个工程关键点: 1. AI Agent:要让数字人像人一样思考就需要写一个像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。 2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式可以是 HTTP、webSocket 等。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 实时性:由于算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的 API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。 4. 多元跨模态:不仅仅是语音交互,还可以通过添加摄像头数据获取数据,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常和人交流时不是线性对话,会有插话、转移话题等情况,这些情景需要通过工程丝滑处理。 如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此推荐借助开源社区的力量,现在开源社区已经有了像 dify、fastgpt 等等成熟的高质量 AI 编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的 AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了 dify 的框架,利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时 Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由 Dify 控制,从而低门槛做出来自己高度定制化的数字人。具体的部署过程参考 B 站视频:https://www.bilibili.com/video/BV1kZWvesE25 。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台,然后部署自己的模型。此外,数字人 GUI 工程中仍然保留了 LLM、ASR、TTS、Agent 等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加 Geek 的 Agent 实现也可以选择直接后端编码扩展实现。 使用 Dify 接口需要注意: 1. 必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。 2. 只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
如何构建自己的AI职业
以下是关于构建自己的 AI 职业的一些建议: 1. 掌握 Prompt 工程:了解 Claude 的 5 层 Prompt 体系,将其应用到日常工作中,如市场研究、写作、数据分析等项目,以提升驾驭 AI 的能力。 2. 借助元学习:鉴于人工智能依赖的神经网络基础,通过元学习让 AI 更快地获得知识,与人类共同进步。 3. 实践打造微信 AI 机器人: 确定功能范围,如支持用户发送“关键字”获取“AI 相关资料链接”,回答 AI 相关知识,作为微信客服助手发布在微信公众号上。 准备实现所需的内容,包括编写 prompt 提示词,整理“关键字”与“AI 相关资料链接”的对应关系,创建知识库、工作流,准备微信公众号。
2025-01-12
人工智能构建第二大脑
以下是关于人工智能构建第二大脑的相关内容: 信息到智慧的进化是一个动态、渐进的过程,不仅需要外部信息输入,还需内部认知加工。随着人工智能技术发展,这一进程极大加速和优化。AI 能帮助更快收集处理信息、构建知识体系,甚至模拟人类决策过程。 信息、知识、智慧是人类认知和决策的三个层次,相互联系作用。在 AI 时代,有更多工具和方法加速从信息到智慧的进化,构建高效知识管理体系。 从信息到知识:Forte 强调“外部大脑”概念,利用数字工具和系统存储思考、想法和信息,释放认知负担,专注创意和高阶思考。可使用数字笔记工具记录,通过分类、标签或链接关联零散信息形成知识网络,对信息深加工提炼知识。 从知识到智慧:智慧形成不仅需知识积累,更要深刻理解和应用。Forte 提倡复盘和整合,复盘指定期回顾笔记和想法加深理解发现新联系,整合指将新理解和旧知识融合形成更全面深入见解。通过不断复盘和整合,将知识内化为理解和智慧,可能涉及跨领域知识融合、问题解决策略创新或对复杂系统深刻洞察。 AI 时代的信息到智慧进化:这一进化过程加速,AI 和机器学习技术可处理分析大量信息,识别模式联系,通过智能推荐等功能提高从信息到知识转化效率,辅助决策分析等应用模拟扩展人类智慧。结合《打造第二大脑》理论和 AI 技术发展,人类知识管理和智慧发展处于全新充满可能的时代,个人和组织通过高效信息管理可提升生产力创造力,形成独到智慧见解。在信息泛滥时代,引入 DIKW 模型和 CODE 信息管理法则可提供更深刻理解和实践指导。 此外,构建外脑的核心是思维方式与执行方法,虽核心不是工具,但好工具能提升效率。在智能时代,处理语言与数据效率指数级提升,影响软件工具使用、设计及对知识管理与传播的认知方式。
2025-01-11
0基础,如何开始学习ai
对于 0 基础学习 AI 的朋友,以下是一份详细的学习指南: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是 0 基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但请注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-01-30
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,您还可以参考《雪梅 May 的 AI 学习日记》,该日记适合纯 AI 小白。其学习模式是输入→模仿→自发创造,学习内容可根据个人兴趣在 waytoAGI 社区寻找最新的内容。学习时间较为灵活,且学习资源免费开源。
2025-01-30
学习AI技术从哪里开始
对于新手学习 AI ,可以从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 如果您的学习方向偏向技术研究,需要掌握的知识包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您的学习方向偏向应用,需要掌握的知识包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-30
本网站都有哪些讲Ai量化炒股的学习资料
很抱歉,目前本网站没有关于 AI 量化炒股的学习资料。
2025-01-29
小白学习ai的路径
以下是为小白提供的学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还可以参考《雪梅 May 的 AI 学习日记》: 1. 适合纯 AI 小白,可先看左边的目录。 2. 学习模式是输入→模仿→自发创造。 3. 去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 4. 学习时间不是每天依次进行,有空的时候学习。 5. 保持良好的学习状态,能学多少算多少。 6. 学习资源的内容都是免费开源的。 YoYo 的学习心得: 1. 学习前状态:不理解 AI 和提示词工程,作为文科生不懂代码、英语差,注册尝试各种 AI 工具走了不少弯路。 2. 学习后现状:能搓多 Agent 的智能体,营销文案 demo,SQL 代码进阶学习应用,创建多个智能体,在公司中实践智能客服等。 3. 学习路径:关键词为“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”,学习路径如同主线+支线的游戏通关。 4. 个人感受:学不完,找到适合自己的就好,学以致用,通过学习分享不断填补知识的缝隙来成长。
2025-01-29
推荐关于AI的视频学习课件
以下为您推荐关于 AI 的视频学习课件: 1. 【野菩萨】课程: 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,获胜者有机会获得课程奖励,包括冠军奖励 4980 课程一份、亚军奖励 3980 课程一份、季军奖励 1980 课程一份、入围奖励 598 野神殿门票一张。扫码添加菩萨老师助理,了解更多课程信息。 2. B 站 up 主 Nally 的课程:免费且每节 15 分钟,内容很棒。 3. 新手学习 AI 推荐: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),可以根据自己的兴趣选择特定的模块进行深入学习。建议掌握提示词的技巧。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 体验 AI 产品:尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-01-29
我想通过dify调整一个客服系统,但是总是不能很好的把知识库里的数据回复完整?
使用 Dify 构建知识库的具体步骤如下: 1. 准备数据: 收集需要纳入知识库的文本数据,包括文档、表格等格式。 对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集: 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式: Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用: 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化: 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。 定期更新知识库,增加新的内容以保持知识库的时效性。 总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-01-29
零基础,如何系统性的学习和运用AI,请提供一个系统性的教程学习
对于零基础学习和运用 AI,以下是一个系统性的教程: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、深入学习 Python 编程(如果希望继续精进) 至少熟悉以下内容: 1. Python 基础 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 2. 函数 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在 Python 中工作的。 3. 模块和包 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 4. 面向对象编程(OOP) 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 5. 异常处理 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 6. 文件操作 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。
2025-01-29
如何系统学习AI
以下是系统学习 AI 的方法: 1. 编程语言基础:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识。 2. 工具和平台体验:使用 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等)。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养思考和判断能力。 对于新手学习 AI: 1. 了解基本概念: 阅读「」部分,熟悉术语和基础概念。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始学习之旅: 参考「」中的课程,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,争取获得证书。 3. 选择感兴趣模块深入:根据自身兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 4. 实践和尝试:实践巩固知识,尝试使用各种产品创作作品,并在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。
2025-01-27
我想系统化学习ai该怎么做
如果您想系统化学习 AI,可以参考以下步骤: 1. 迈出第一步,看书听课进社区: 系统性学习,避免碎片化输入。一开始可以系统地看相关书籍、听优质课程,了解 AI 的底层原理和发展历程,打好基础。 例如,可以在 B 站寻找一些介绍 ChatGPT 原理的分享,但如果要系统学习,应选择质量更高的内容。 2. 加入 AI 社区: 例如“通往 AGI 之路”这样的开源知识库,参考新手指引,直接走进当前最流行的 AI 腹地。 3. 对于中学生来说: 从编程语言入手学习,如 Python、JavaScript 等,掌握编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,体验其应用场景,也可以探索面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术(如机器学习、深度学习等),以及在各领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的编程竞赛、创意设计大赛等,尝试用 AI 技术解决实际问题,培养动手能力。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考其对未来社会的影响。 总之,要全面系统地学习 AI 知识和技能,可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,为未来的发展做好准备。
2025-01-26
客服系统,需要写一段提示词给大模型,需求是,先跟用户表示歉意,产品问题请咨询我另外一个同事,点击同事名称即可咨询,每次回复的内容不能一样
以下是为您生成的客服系统相关的大模型提示词示例,每次回复内容不同: 1. 非常抱歉给您带来了不便,关于产品问题,您可以咨询我的同事,点击即可进行咨询。 2. 很抱歉让您遇到了困扰,产品方面的疑问请找我的同事咨询,点击就能联系到。 3. 实在不好意思呀,产品的问题您向我的同事咨询会更清楚,点击即可开启咨询。 4. 深感抱歉,对于产品的情况,建议您咨询我的同事,点击就能和他交流。 5. 抱歉给您造成了不好的体验,产品相关问题请咨询我的同事,点击就能获取帮助。
2025-01-26
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24