Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

提示词编写

Answer

编写提示词(prompt)是一个关键步骤,以下是一些建议:

  1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。
  2. 提供上下文:若任务需特定背景知识,提供足够信息。
  3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。
  4. 给出具体要求:如有特定格式或风格,在提示词中指明。
  5. 使用示例:如有期望结果,提供示例帮助理解需求。
  6. 保持简洁:简洁明了,避免过多信息导致模型困惑。
  7. 使用关键词和标签:有助于模型理解任务主题和类型。
  8. 测试和调整:生成文本后检查结果,根据需要调整提示词,可能需多次迭代。

在 SD 绘画中,编写提示词时:

  • 根据想画的内容写,多个提示词用英文半角符号[,]隔开。
  • 一般概念性、大范围、风格化的关键词写在前,叙述画面内容的其次,最后是描述细节的。
  • 每个词语在模型中的自带权重可能不同,越靠后的权重越低。
  • 可用括号人工修改提示词权重。
  • 关键词应具特异性,措辞避免抽象和有解释空间。

在利用 Claude 制作 Crossword 小游戏时,提示词编写也很重要,复杂点在于代码,需根据需求分析逐步实现,包括单词和解释、卡片制作、难度设定等环节。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:怎么写提示词 prompt?

写prompt(提示)是一个关键的步骤,它决定了AI模型如何理解并生成文本。一个好的prompt能够帮助AI模型更好地理解任务的要求,并生成更符合预期的文本。以下是一些编写prompt的建议:1.明确任务:确保你的prompt清晰地定义了任务。例如,如果你需要写一个故事,你的prompt应该包含故事的背景、角色和主要情节。2.提供上下文:如果任务需要特定的背景知识,确保在prompt中提供足够的上下文。例如,如果你需要写一篇关于某个历史事件的报告,提供一些关于该事件的基本信息。3.使用清晰的语言:尽量使用简单、清晰的语言来描述任务。避免使用模糊或歧义的词汇,以免AI模型产生误解。4.给出具体要求:如果你的任务有特定的格式或风格要求,请在prompt中明确指出。例如,如果你的文章需要遵循特定的格式或引用特定类型的文献,确保在prompt中说明。5.使用示例:如果你有特定的期望结果,可以在prompt中提供示例。这有助于AI模型更好地理解你的需求。6.保持简洁:尽量保持prompt简洁明了。过多的信息可能会使AI模型产生困惑,导致生成不准确的结果。7.使用关键词和标签:在prompt中使用关键词和标签可以帮助AI模型更好地理解任务的主题和类型。8.测试和调整:在生成文本后,仔细检查结果,并根据需要调整prompt。这可能需要多次迭代,直到达到满意的结果。希望这些建议能帮助你更好地编写prompt。内容由AI大模型生成,请仔细甄别。

SD新手:入门图文教程

根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号[,],如:masterpiece,best quality,ultra-detailed,illustration,close-up,straight on,face focus,1girl,white hair,golden eyes,long hair,halo,angel wings,serene expression,looking at viewer一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词,大致顺序如:(画面质量提示词),(画面主题内容)(风格),(相关艺术家),(其他细节)不过在模型中,每个词语本身自带的权重可能有所不同,如果模型训练集中较多地出现某种关键词,我们在提示词中只输入一个词就能极大地影响画面,反之如果模型训练集中较少地出现某种关键词,我们在提示词中可能输入很多个相关词汇都对画面的影响效果有限。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,譬如Anime(动漫)一词就相对泛化,而Jojo一词就能清晰地指向Jojo动漫的画风。措辞越不抽象越好,尽可能避免留下解释空间的措辞。可以使用括号人工修改提示词的权重,方法如:(word)-将权重提高1.1倍((word))-将权重提高1.21倍(=1.1*1.1)[word]-将权重降低至原先的90.91%(word:1.5)-将权重提高1.5倍(word:0.25)-将权重减少为原先的25%(word)-在提示词中使用字面意义上的()字符

利用 Claude 制作 Crossword 小游戏(一)

嘿,大家好呀,我是景淮,一个在加拿大的朋友,每天陪你一起玩转AI。前两天做了一个拼音版的Word Searching小游戏,然后其实就想到了一个在国外不管是老人还是孩子都很爱的玩一个游戏。就是Crossword,这游戏可以说学英语时候必玩的小游戏。所以,今天的主题是利用Claude制作Crossword小游戏(一)本文会根据以下内容顺序进行:需求分析分步实现提示词编写、测试总结[heading2]一、需求分析[content]我们首先需要输入一个主题,根据主题生成主题相关的单词。然后制作Crossword表,我们不需要制作太过复杂的表,做一个简单的就好。这段内容最复杂的点其实还是在代码,然后才是提示词。让我们一步一步来,先生成单词,和解释,然后按照生成顺序,第一个单词放在最中间,然后下一个单词去寻找最佳的交叉点,一个水平,一个垂直的顺序,直到所有单词都放入表格中。[heading3]输入[content]输入一个主题[heading3]输出[content]可视化的HTML页面(Crossword表格)[heading2]二、分步实现[heading3]一)单词和解释[content]提示词效果展示[heading3]二)卡片制作[content]效果展示调了半天这段代码...代码逻辑难度远远大于提示词的难度,尝试用提示词控制,也没法控制完美。代码其实已经长到没法依次输出完了...不如直接写个代码的项目好了==[heading3]三)难度设定[heading2]三、提示词编写、测试[heading3]一)提示词[heading3]二)效果展示

Others are asking
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
现在AI编程始终不能编写一些比较大的项目
目前 AI 编程在处理较大项目时存在一些限制,主要原因包括: 1. 上下文窗口限制:复杂项目需要全局理解,AI 难以设计架构和模块化。 2. 自然语言描述不精确:项目需求常需反复讨论才能明确,AI 难以完全掌握。 3. 无法感知环境和直接执行:编译、部署、调试等复杂任务 AI 难以独立完成。 4. 幻觉问题:AI 可能编造不存在的 API 或错误代码,需人工严格审查。 在实际应用中,对于一些简单需求,我们可以给 AI 下达明确命令来完成一次性任务,如制作简单的 Chrome 插件、编写脚本或创建 Python 爬虫。但当期待提高,希望从繁琐日常任务中解脱时,需要了解 AI 编程的边界和限制。 在选择解决方案时,应遵循一定的准则: 1. 优先找线上工具,例如制作白底图等功能,若线上有现成工具最好。 2. 其次找插件,基于现有系统找合适的插件。 3. 最后是本地应用,当线上工具和插件都不满足需求时,再考虑本地应用。 对于 API 功能,先找现成的开源工具,GitHub 上有很多。然后考虑付费服务。只有在都找不到现成方案时,才考虑自己编程,且编程时要以终为始,抛开技术障碍,聚焦于目标。
2025-01-25
新手使用,如何编写提示词
对于新手编写提示词,以下是一些要点和方法: 1. 基本语法:根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号。 2. 词语顺序:一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。大致顺序为。 3. 权重调整:可以使用括号人工修改提示词的权重,如:字符。 4. 关键词选择:关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。 5. 描述逻辑:通常的描述逻辑包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 6. 辅助工具和方法: 利用功能型辅助网站,如 http://www.atoolbox.net/ ,它可以通过选项卡的方式快速地填写关键词信息;https://ai.dawnmark.cn/ ,其每种参数都有缩略图可以参考,方便更加直观地选择提示词。 去 C 站(https://civitai.com/)里面抄作业,每一张图都有详细的参数,可点击下面的复制数据按钮,然后直接粘贴到正向提示词栏里。 对于星流一站式 AI 设计工具: 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 写好提示词的方法包括使用预设词组、保证提示词内容准确(包含人物主体、风格、场景特点、环境光照、画面构图、画质)、调整负面提示词、利用“加权重”功能让 AI 明白重点内容,还可使用辅助功能,如翻译功能、删除所有提示词、会员加速等。
2025-01-23
如何高效的编写软件测试用例
以下是关于如何高效编写软件测试用例的方法: 1. 基于规则的测试生成 测试用例生成工具 Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成 深度学习模型 DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成 文档驱动测试生成 Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成 状态模型 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟 Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例 Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 6. 工具和平台 Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2025-01-22
怎么在coze的智能体总加入一个使用MARKDOWN编写的代码的prompt?
在 Coze 的智能体中加入使用 Markdown 编写的代码的 prompt 可以参考以下方法: 首先,了解相关的任务和目标,比如像实现输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。为达到这一效果,大模型对话产品通常需要完成网页爬取、内容总结、二维码生成、卡片样式生成等关键步骤。 在编写 prompt 时,可以发现新的词生卡 Prompt 组织方法,把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”“字体规范”“颜色规范”的独立模块,并结合“内容结构”进行要求提示。这种提示词组织方式具有模型通用性、提示简易性和生成稳定性等显著优势。 对于刚入门的朋友,首推 LangGPT 结构化提示词,直观易懂,可以快速上手。对于想要进阶的用户,一方面可以继续选择 LangGPT,另一方面如有额外精力和好奇心,不妨尝试刚哥推崇的 Lisp 伪代码格式,有助于精炼提示词和提升对措辞理解、概念认知的能力。但需要注意的是,真正重要的不是提示词的外在形式,而是内容是否与 AI 的“理解机制”相契合。同时,在实际应用中,还需要经过多次调试,并根据测试 bug 微调提示词,直至稳定运行。
2025-01-19
可以读取excel数据,编写程序的ai工具
以下是一些可以读取 Excel 数据并编写程序的 AI 工具相关内容: 1. 自制微博指数爬虫工具:通过分析微博话题页面,找到真实数据地址,明确规则后让 AI 帮忙写代码。需求是抓取微博话题 30 天的分日数据,在执行代码时 topic_name 由用户手动输入,在 colab 上运行并将数据存储到 Excel 自动下载到本地。 2. 用 AI 撰写专业区域经济报告:信息收集时利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。内容拆分时针对报告需求将内容拆分,数据处理借助传统工具如 Excel 结合 AI 指导高效操作数据筛选与图表生成,分析与撰写时通过整理数据利用 AI 辅助分析后撰写报告初稿,最终内容需人工主导校验。 3. 金融服务业中生成式 AI 的应用:生成式 AI 可以帮助金融服务团队改进内部流程,如在预测方面帮助编写 Excel、SQL 和 BI 工具中的公式和查询,发现模式并为预测建议输入;在报告方面帮助自动创建文本、图表、图形等内容,并根据不同示例调整报告;在会计和税务方面帮助综合、总结并提出可能答案;在采购和应付账款方面帮助自动生成和调整合同、采购订单和发票以及提醒。
2025-01-16
提示词怎么用
提示词在现代大型语言模型中具有重要作用,以下是关于提示词使用的相关知识: 1. 理解提示词的作用:提示词为模型提供上下文和指示,直接影响模型输出质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:可在领域社区、Github 等资源中研究和学习已有的优秀提示词案例。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试各种变体,持续优化。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究:持续关注提示工程最新的研究成果和方法论。 在具体的应用场景中,如星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 提示词优化方面,启用提示词优化后可帮您扩展提示词,更生动地描述画面内容。 写好提示词的方法: 小白用户可点击提示词上方官方预设词组进行生图。 提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,帮助 AI 理解不想生成的内容。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大越优先。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 在 Stable Diffusion 中: 根据想画的内容写出提示词,多个提示词之间使用英文半角符号“,”。 一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。 每个词语本身自带的权重可能有所不同,关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。 可以使用括号人工修改提示词的权重。
2025-01-31
怎么学习AI提示词??
以下是关于学习 AI 提示词的建议: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,您可以根据兴趣选择特定模块,比如一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习后,实践是巩固知识的关键。尝试使用各种产品做出作品,在知识库中也有很多实践后的作品和文章分享。 5. 体验 AI 产品:与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式。 6. 学习提示词的构建技巧: 理解提示词的作用,它向模型提供上下文和指示,影响模型输出质量。 明确任务目标,用简洁准确的语言描述,给予足够背景信息和示例,使用清晰指令,对特殊要求明确指示,如输出格式、字数限制等。 7. 参考优秀案例:研究和学习已有的优秀提示词案例,在领域社区、Github 等资源中可找到大量案例。 8. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 9. 活用提示工程工具:目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 10. 跟上前沿研究:提示工程是前沿研究领域之一,持续关注最新研究成果和方法论。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。
2025-01-31
提示词
以下是关于提示词的相关知识: 艺术字生成:模型选择图片 2.1,输入提示词(可参考案例提示词)。案例提示词如:金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风;巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”;巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画;巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。原文链接:https://mp.weixin.qq.com/s/jTMFYKxsN8dYNZu3VHKBnA 星流一站式 AI 设计工具:在 prompt 输入框中可输入提示词、使用图生图功能辅助创作。提示词用于描绘画面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。还可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,使用辅助功能如翻译、删除所有提示词、会员加速等。 提示词要素:提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-01-30
怎么给你提示词
以下是关于如何写提示词(prompt)的相关内容: 在学校通用场景中,有创建课程计划助手、写作素材收集助手、雅思写作助手等,其提示词示例如下: 创建课程计划助手:“我是教{……}的老师,帮我创建一份课程计划” 写作素材收集助手:“提供{指定主题}的结论和数据,帮我提供写作素材” 雅思写作助手:“我希望你作为雅思写作考官,帮我提升英语。我们现在开始,我的第一个问题是……” 编写提示词的方法和技巧包括: 假设情景:鼓励探讨假设性场景,例如“假设全球变暖持续恶化,我们需要采取哪些措施应对?” 数据:鼓励使用统计数据或数据支持主张,比如“在关于电动汽车的文章中提供销售数据和环境影响数据。” 个性化:根据用户偏好或特点要求个性化,如“请根据用户对喜剧电影的喜好推荐几部好看的电影。” 语气:指定所需语气(如正式、随意、信息性、说服性),例如“请用正式语气编写一篇关于气候变化的文章。” 格式:定义格式或结构(如论文、要点、大纲、对话),比如“请为我提供一个关于健康饮食的要点清单。” 限制:指定约束条件,如字数或字符数限制,例如“请提供一个关于太阳能的 100 字简介。” 引用:要求包含引用或来源以支持信息,比如“请在关于全球变暖的文章中引用权威研究。” 语言:如果与提示不同,请指明回应的语言,例如“请用法语回答关于巴黎旅游景点的问题。” 反驳:要求解决潜在的反驳论点,比如“针对抵制疫苗接种的观点提出反驳。” 术语:指定要使用或避免的行业特定或技术术语,例如“请用通俗易懂的语言解释区块链技术。” 编写提示词的建议: 1. 明确任务:清晰地定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需背景知识,提供足够信息。 3. 使用清晰语言:避免模糊或歧义词汇。 4. 给出具体要求:明确格式或风格等。 5. 使用示例:提供期望结果的示例。 6. 保持简洁:避免过多信息导致困惑。 7. 使用关键词和标签:帮助模型理解主题和类型。 8. 测试和调整:生成文本后检查并调整。 希望这些内容能帮助您更好地编写提示词。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-29
提示词是什么
提示词(Prompt)是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出。它发挥“提示”模型的作用,设计高质量的提示词需根据目标任务和模型能力精心设计,良好的提示词能让模型正确理解人类需求并给出符合预期的结果。 提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。输入语言方面,不同基础模型有不同要求,支持中英文输入。写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等;可调整负面提示词,帮助 AI 理解不想生成的内容;利用“加权重”功能让 AI 明白重点内容;还可使用预设词组、辅助功能如翻译、删除所有提示词、会员加速等。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词是由一些要素组成的。为了更好地演示提示词要素,下面是一个简单的提示,旨在完成文本分类任务。在上面的提示示例中,指令是“将文本分类为中性、否定或肯定”。输入数据是“我认为食物还可以”部分,使用的输出指示是“情绪:”。请注意,此基本示例不使用上下文,但也可以作为提示的一部分提供。例如,此文本分类提示的上下文可以是作为提示的一部分提供的其他示例,以帮助模型更好地理解任务并引导预期的输出类型。
2025-01-29
AI提示词学习资料
以下是为您整理的关于 AI 提示词的学习资料: 《拘灵遣将|不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事》:指出要从古人总结的智慧中学习写提示词,接受 AI 存在的“不稳定性”,提示词应是相对完善的“谈话方案”,成果在对话中产生,不能期待完美的提示词和答案。 《从零开始:AI 视频制作小白的成长之路📹》:提到提示词有很多坑,如有人花钱学习但仍上手困难。提示词的框架为主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍),并举例说明。 《雪梅 May 的 AI 学习日记》:2023 年 ChatGPT 出现后,提示词成为基本功,沉淀了一些经典框架。作者学习了一段时间 Agent 后,打算看吴恩达的体系课程,推荐吴恩达的 prompt 课程,并分享了相关学习链接。作者还通过练习用 prompt 写白皮书,实际体验中 AI 能帮助完成约 20%的工作。
2025-01-29