Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

提示词编写

Answer

编写提示词(prompt)是一个关键步骤,以下是一些建议:

  1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。
  2. 提供上下文:若任务需特定背景知识,提供足够信息。
  3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。
  4. 给出具体要求:如有特定格式或风格,在提示词中指明。
  5. 使用示例:如有期望结果,提供示例帮助理解需求。
  6. 保持简洁:简洁明了,避免过多信息导致模型困惑。
  7. 使用关键词和标签:有助于模型理解任务主题和类型。
  8. 测试和调整:生成文本后检查结果,根据需要调整提示词,可能需多次迭代。

在 SD 绘画中,编写提示词时:

  • 根据想画的内容写,多个提示词用英文半角符号[,]隔开。
  • 一般概念性、大范围、风格化的关键词写在前,叙述画面内容的其次,最后是描述细节的。
  • 每个词语在模型中的自带权重可能不同,越靠后的权重越低。
  • 可用括号人工修改提示词权重。
  • 关键词应具特异性,措辞避免抽象和有解释空间。

在利用 Claude 制作 Crossword 小游戏时,提示词编写也很重要,复杂点在于代码,需根据需求分析逐步实现,包括单词和解释、卡片制作、难度设定等环节。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:怎么写提示词 prompt?

写prompt(提示)是一个关键的步骤,它决定了AI模型如何理解并生成文本。一个好的prompt能够帮助AI模型更好地理解任务的要求,并生成更符合预期的文本。以下是一些编写prompt的建议:1.明确任务:确保你的prompt清晰地定义了任务。例如,如果你需要写一个故事,你的prompt应该包含故事的背景、角色和主要情节。2.提供上下文:如果任务需要特定的背景知识,确保在prompt中提供足够的上下文。例如,如果你需要写一篇关于某个历史事件的报告,提供一些关于该事件的基本信息。3.使用清晰的语言:尽量使用简单、清晰的语言来描述任务。避免使用模糊或歧义的词汇,以免AI模型产生误解。4.给出具体要求:如果你的任务有特定的格式或风格要求,请在prompt中明确指出。例如,如果你的文章需要遵循特定的格式或引用特定类型的文献,确保在prompt中说明。5.使用示例:如果你有特定的期望结果,可以在prompt中提供示例。这有助于AI模型更好地理解你的需求。6.保持简洁:尽量保持prompt简洁明了。过多的信息可能会使AI模型产生困惑,导致生成不准确的结果。7.使用关键词和标签:在prompt中使用关键词和标签可以帮助AI模型更好地理解任务的主题和类型。8.测试和调整:在生成文本后,仔细检查结果,并根据需要调整prompt。这可能需要多次迭代,直到达到满意的结果。希望这些建议能帮助你更好地编写prompt。内容由AI大模型生成,请仔细甄别。

SD新手:入门图文教程

根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号[,],如:masterpiece,best quality,ultra-detailed,illustration,close-up,straight on,face focus,1girl,white hair,golden eyes,long hair,halo,angel wings,serene expression,looking at viewer一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词,大致顺序如:(画面质量提示词),(画面主题内容)(风格),(相关艺术家),(其他细节)不过在模型中,每个词语本身自带的权重可能有所不同,如果模型训练集中较多地出现某种关键词,我们在提示词中只输入一个词就能极大地影响画面,反之如果模型训练集中较少地出现某种关键词,我们在提示词中可能输入很多个相关词汇都对画面的影响效果有限。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,譬如Anime(动漫)一词就相对泛化,而Jojo一词就能清晰地指向Jojo动漫的画风。措辞越不抽象越好,尽可能避免留下解释空间的措辞。可以使用括号人工修改提示词的权重,方法如:(word)-将权重提高1.1倍((word))-将权重提高1.21倍(=1.1*1.1)[word]-将权重降低至原先的90.91%(word:1.5)-将权重提高1.5倍(word:0.25)-将权重减少为原先的25%(word)-在提示词中使用字面意义上的()字符

利用 Claude 制作 Crossword 小游戏(一)

嘿,大家好呀,我是景淮,一个在加拿大的朋友,每天陪你一起玩转AI。前两天做了一个拼音版的Word Searching小游戏,然后其实就想到了一个在国外不管是老人还是孩子都很爱的玩一个游戏。就是Crossword,这游戏可以说学英语时候必玩的小游戏。所以,今天的主题是利用Claude制作Crossword小游戏(一)本文会根据以下内容顺序进行:需求分析分步实现提示词编写、测试总结[heading2]一、需求分析[content]我们首先需要输入一个主题,根据主题生成主题相关的单词。然后制作Crossword表,我们不需要制作太过复杂的表,做一个简单的就好。这段内容最复杂的点其实还是在代码,然后才是提示词。让我们一步一步来,先生成单词,和解释,然后按照生成顺序,第一个单词放在最中间,然后下一个单词去寻找最佳的交叉点,一个水平,一个垂直的顺序,直到所有单词都放入表格中。[heading3]输入[content]输入一个主题[heading3]输出[content]可视化的HTML页面(Crossword表格)[heading2]二、分步实现[heading3]一)单词和解释[content]提示词效果展示[heading3]二)卡片制作[content]效果展示调了半天这段代码...代码逻辑难度远远大于提示词的难度,尝试用提示词控制,也没法控制完美。代码其实已经长到没法依次输出完了...不如直接写个代码的项目好了==[heading3]三)难度设定[heading2]三、提示词编写、测试[heading3]一)提示词[heading3]二)效果展示

Others are asking
AI编写自动化框架的脚本能实现吗?可以选用哪些工作来支持?框架选用需要进行指定吗?
AI 编写自动化框架的脚本是可以实现的。以下是一些可选用的工作和支持工具: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 至于框架选用是否需要进行指定,这取决于具体的项目需求和技术环境。在选择框架时,需要综合考虑多种因素,如项目的规模、技术栈、开发团队的技能水平等。
2025-02-26
我是0基础代码小白,我希望快速编写一款APP,满足我所需要的要求,我用deepseek生产app开发者文档,然后用bolt.new工具开发,开发到一半,发现要收费,给我中断了,我该怎么办
对于您这种 0 基础代码小白在开发 APP 过程中遇到收费中断的情况,以下是一些建议: 1. 重新评估您的需求和能力:像案例中的白九龄一样,思考您的想法是否过于复杂,是否可以先从简单的插件开发入手,降低开发难度。 2. 学习基础知识:包括代码环境安装、终端操作等,通过基础实践教程资料来弥补知识短板。 3. 借鉴他人成功经验:仔细研究别人的项目,按照成功的案例原封不动地去实现,从中领悟开发的要点。 4. 清晰描述需求:在开发前与工具充分沟通,明确需求和实现步骤,避免盲目开发。 5. 寻找免费替代工具:既然当前使用的工具收费中断,您可以寻找其他类似的免费工具来继续您的开发工作。 6. 做好项目记录:让工具帮忙写一个 README 文档,记录项目进展、下一步计划以及如何开启和关闭项目,方便后续跟进。
2025-02-23
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
现在AI编程始终不能编写一些比较大的项目
目前 AI 编程在处理较大项目时存在一些限制,主要原因包括: 1. 上下文窗口限制:复杂项目需要全局理解,AI 难以设计架构和模块化。 2. 自然语言描述不精确:项目需求常需反复讨论才能明确,AI 难以完全掌握。 3. 无法感知环境和直接执行:编译、部署、调试等复杂任务 AI 难以独立完成。 4. 幻觉问题:AI 可能编造不存在的 API 或错误代码,需人工严格审查。 在实际应用中,对于一些简单需求,我们可以给 AI 下达明确命令来完成一次性任务,如制作简单的 Chrome 插件、编写脚本或创建 Python 爬虫。但当期待提高,希望从繁琐日常任务中解脱时,需要了解 AI 编程的边界和限制。 在选择解决方案时,应遵循一定的准则: 1. 优先找线上工具,例如制作白底图等功能,若线上有现成工具最好。 2. 其次找插件,基于现有系统找合适的插件。 3. 最后是本地应用,当线上工具和插件都不满足需求时,再考虑本地应用。 对于 API 功能,先找现成的开源工具,GitHub 上有很多。然后考虑付费服务。只有在都找不到现成方案时,才考虑自己编程,且编程时要以终为始,抛开技术障碍,聚焦于目标。
2025-01-25
新手使用,如何编写提示词
对于新手编写提示词,以下是一些要点和方法: 1. 基本语法:根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号。 2. 词语顺序:一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。大致顺序为。 3. 权重调整:可以使用括号人工修改提示词的权重,如:字符。 4. 关键词选择:关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。 5. 描述逻辑:通常的描述逻辑包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 6. 辅助工具和方法: 利用功能型辅助网站,如 http://www.atoolbox.net/ ,它可以通过选项卡的方式快速地填写关键词信息;https://ai.dawnmark.cn/ ,其每种参数都有缩略图可以参考,方便更加直观地选择提示词。 去 C 站(https://civitai.com/)里面抄作业,每一张图都有详细的参数,可点击下面的复制数据按钮,然后直接粘贴到正向提示词栏里。 对于星流一站式 AI 设计工具: 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 写好提示词的方法包括使用预设词组、保证提示词内容准确(包含人物主体、风格、场景特点、环境光照、画面构图、画质)、调整负面提示词、利用“加权重”功能让 AI 明白重点内容,还可使用辅助功能,如翻译功能、删除所有提示词、会员加速等。
2025-01-23
如何高效的编写软件测试用例
以下是关于如何高效编写软件测试用例的方法: 1. 基于规则的测试生成 测试用例生成工具 Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成 深度学习模型 DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成 文档驱动测试生成 Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成 状态模型 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟 Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例 Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 6. 工具和平台 Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2025-01-22
提示词图书馆
以下是一些与提示词相关的资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru: 此外,还有以下相关内容: 画小二:如何写好提示词是创建智能体第一步,相关资源如,以及提示词网站分享,如: Learn Prompting https://learnprompting.org/docs/intro AI Short https://www.aishort.top/en/ AIPRM https://www.aiprm.com/prompts/ Prompt Library https://promptlibrary.org/ Prompt 网站精选,图像类 Prompt 网站: Public Prompts:免费的 prompt 合集,收集高质量的提示词, OPS 可视化提示词:这个网站有 Mid Journey 的图片风格、镜头等写好的词典库,方便你快速可视化生成自己的绘画提示词, MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用, OpenArt:AI 人工智能图像生成器, AiTuts Prompt:AiTuts Prompt 是一个精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格供你选择, AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词, MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库,
2025-03-02
我是一名自媒体创作者,想用AI工具文字生图,图片内容如下:一个穿着发光衣服的美女在室内。请你给我提示词
以下是为您生成的提示词,用于生成一个穿着发光衣服的美女在室内的图片: 人物及主体特征:一位美丽的女性,身着发光的衣服,精致的五官,迷人的微笑,优雅的动作 场景特征:室内环境,装饰精美,有柔和的灯光 环境光照:温暖的灯光,营造出温馨的氛围 画幅视角:适中的距离,展现人物的全貌,正常的人物比例,平视的观察视角 画质:高画质,高分辨率 画风:写实 英文提示词为:, drawing, paintbrush, a beautiful woman wearing shining clothes, in an indoor environment with soft lights, delicate features, charming smile, elegant movement, decorated interior, warm lighting, moderate distance, normal proportion,平视视角, high quality, high resolution, realistic 。 同时,您还可以添加反向提示词来排除不想要的效果,例如:NSFw, 。 对于新手而言,您可以通过以下功能型辅助网站来帮助书写提示词: http://www.atoolbox.net/ ,它可以通过选项卡的方式快速地填写关键词信息。 https://ai.dawnmark.cn/ ,它的每种参数都有缩略图可以参考,可以方便更加直观地选择提示词。 您还可以去 C 站(https://civitai.com/)里面抄作业,每一张图都有详细的参数,点击下面的复制数据按钮,然后直接粘贴到正向提示词栏里,点击生成按钮下的第一个按键,Stable Diffusion 就可以将所有的参数自动匹配。但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会截然不同。您也可以只取其中比较好的一些描述词使用,比如人物描写、背景描述、一些小元素或者是画面质感之类的。
2025-03-02
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 可以点击提示词上方官方预设词组进行生图,提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。其关键点包括精确性、创造性、迭代、上下文理解。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2025-03-02
如何写好提示词
写好提示词(prompt)需要注意以下几点: 1. 明确任务:清晰地定义任务,比如写故事时应包含故事背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,要在提示词中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,应在提示词中明确指出。 5. 使用示例:若有特定期望结果,可提供示例帮助模型理解需求。 6. 保持简洁:提示词应简洁明了,过多信息可能导致模型困惑。 7. 使用关键词和标签:有助于模型更好理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需要多次迭代达到满意结果。 此外,在一些具体的工具中,如星流一站式 AI 设计工具,写好提示词还有以下要点: 1. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 2. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 3. 利用“加权重”功能:在功能框增加提示词并进行加权重调节,权重数值越大越优先,也可对已有提示词权重进行编辑。 4. 辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词等功能。 同时,要注意提示词应清晰明确,避免模糊不清的指令,提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2025-03-01
deepseek提示词怎么写最有效?
以下是关于 Deepseek 提示词怎么写最有效的一些建议: 1. 新旧提示法对比: 传统方法:像唠叨家长一样详细列举各种要求,可能会限制模型的创造力。 新型技巧:像对聪明助理打暗号,只在关键点进行引导,例如“主题:环保|要最新案例|结尾有力道”,让模型自主发挥,自动调用知识库中最相关数据,自主组织最佳结构。 2. 提示词写作框架变化:以前需在提示词中列出步骤和思维链,现在只需定义初始状态和目标状态,让模型自行搜索。 3. 提示词的类别作用:一类弥补 AI 缺点,如让 Deepseek 说人话;另一类帮助 AI 理解人类需求,要定义清楚背景和目标状态。 4. 提示词写作要点:要告知 AI 足够背景信息,采用结构化的提示词有助于 AI 遵循指令,且除非必要否则不在提示词里指定思考步骤。 5. Deepseek 模型创作特点:发散能力强,生成点子出色,但收敛成完整故事有问题,文笔有时浮夸。在使用提示词时可加以考虑和引导。
2025-02-28
deepseek 的提示词应该怎么写?和以往的大语言模型的提示词有什么不同?
DeepSeek 的提示词具有以下特点: 1. 语气上还原帝王语气,不过分用力,使用相对古典但兼顾可读性的文字,避免傻气的表达。 2. 对历史细节熟悉,这可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等唐初的历史称谓。 3. 输出极其具体且充满惊人细节,行文的隐喻拿捏到位,如“狼毫蘸墨时发现指尖残留着未洗净的血痂”“史官们此刻定在掖庭局争吵。该用‘诛’还是‘戮’,‘迫’还是‘承’。‘只是这次,他不敢触碰我甲胄上元吉的掌印’”等句子,虽未直接写“愧疚与野心,挣扎与抱负”,但句句体现。 与以往大语言模型的提示词的不同在于:以往模型可能在语气、历史细节和具体细节的处理上不如 DeepSeek 出色。
2025-02-28