Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想要学习nlp的知识,请告诉我该如何入门

Answer

以下是学习 NLP 入门的一些建议:

  1. 理解基本概念:
    • 明确自然语言处理(NLP)包含自然语言理解(NLU)和自然语言生成(NLG)。
    • 了解 NLP 涉及各种技术和方法,目标是让计算机像人类一样理解和使用语言,实现人机交互自然化。
    • 认识到 NLU 专注于让计算机理解人类语言含义,能够识别文本中的情感、意图和实体等,并转化为结构化信息。
    • 知道 NLG 专注于让计算机生成人类可理解的语言,能根据需求和场景生成不同风格和语气的文本。
  2. 学习相关课程:
    • 可以学习如“和 Cursor AI 一起学 Python 编程”中关于 Python 基础语法与文本处理,以及利用 Python 进行自然语言处理的课程。
    • 掌握 Python 的基本语法和结构,能够进行简单的文本数据处理。
  3. 深入学习技术:
    • 了解机器学习是人工智能的子领域,核心是让计算机通过数据学习提高性能。
    • 明白深度学习是机器学习的子领域,尝试模拟人脑工作方式,创建人工神经网络处理数据。
    • 认识到大语言模型是深度学习在自然语言处理领域的应用,像 ChatGPT、文心一言等,被训练来理解和生成人类语言。

希望以上建议对您学习 NLP 入门有所帮助。

Content generated by AI large model, please carefully verify (powered by aily)

References

几个故事告诉你 NLP、NLU、NLG 分别是什么

最后,我们来总结一下这些“小故事”,从图灵奠定自然语言处理的根基,到SHRDLU实现了理解、生成自然语言,大约过去了20年时间,在这短短20年里,科技突飞猛进的速度让我们瞠目结舌(虽然现在的你可能觉得当时的技术很原始)。虽然现在的自然语言处理已经被归到人工智能学科下,但我们仍能看清楚这三者之间的关系,即:自然语言处理(NLP)中包含了自然语言理解(NLU)和自然语言生成(NLG)。如下图所示:而这三者分别干的事情如下:1.NLP:它涉及各种技术和方法,使计算机能够分析、理解和生成人类语言,例如文本和语音。NLP的目标是让计算机像人类一样理解和使用语言,从而实现人机交互的自然化。2.NLU:专注于让计算机理解人类语言的含义。NLU系统试图理解句子和词语背后的含义,而不是仅仅处理单个词语。NLU能够识别文本中的情感、意图和实体,并将其转化为计算机可以理解的结构化信息。3.NLG:专注于让计算机生成人类可以理解的语言。NLG系统将结构化数据转化为自然语言文本,例如新闻报道、产品描述、聊天机器人回复等。NLG能够根据不同的需求和场景,生成不同风格和语气的文本。好了,讲了这么多,不知道今天有没有把这三个概念学会?如果想学习更多人工智能知识,欢迎关注我。谢谢。以上。

和Cursor AI一起学Python编程 (Learn Python with AI)

时间:45分钟教学内容:Python基础语法数据类型:字符串、数字、列表、字典控制结构:条件判断、循环语句文本处理基础字符串操作方法文件读写操作实践实验:中文文本的基本处理提供一段中文文本(如诗歌或文章片段)编写程序统计字符数、词语数、句子数讨论中文编码问题及解决方法教学目标:掌握Python的基本语法和结构能够进行简单的文本数据处理[heading3]第三节:利用Python进行自然语言处理(NLP)[content]时间:45分钟教学内容:什么是自然语言处理NLP的概念和在人文研究中的重要性Python中的NLP库分词的原理举例介绍结巴分词(Jieba)等工具用Jieba进行课文的分词实践实验:中文分词与词频分析使用结巴分词对中文文本进行分词统计词频,找出高频词汇讨论词频分析在语言教学中的应用(如核心词汇的提取)教学目标:掌握使用Python进行基本的NLP操作理解NLP技术在语言研究和教学中的应用

融合RL与LLM思想,探寻世界模型以迈向AGI/ASI的第一性原理反思和探索「RL×LLM×WM>AI4S>AGI>ASI」

LLM大家都已经再熟知不过了,为了承上启下,这里针对LLM再做一些简单的概念以及自认为一些关键内涵的回顾。从概念分类角度上看,大语言模型是深度学习的分支。其中:机器学习是人工智能(AI)的一个子领域,它的核心是让计算机系统能够通过对数据的学习来提高性能。在机器学习中,我们不是直接编程告诉计算机如何完成任务,而是提供大量的数据,让机器通过数据找出隐藏的模式或规律,然后用这些规律来预测新的、未知的数据。深度学习是机器学习的一个子领域,它尝试模拟人脑的工作方式,创建所谓的人工神经网络来处理数据。这些神经网络包含多个处理层,因此被称为“深度”学习。深度学习模型能够学习和表示大量复杂的模式,这使它们在诸如图像识别、语音识别和自然语言处理等任务中非常有效。大语言模型是深度学习的应用之一,尤其在自然语言处理(NLP)领域。这些模型的目标是理解和生成人类语言。为了实现这个目标,模型需要在大量文本数据上进行训练,以学习语言的各种模式和结构。如ChatGPT,文心一言,就是一个大语言模型的例子。被训练来理解和生成人类语言,以便进行有效的对话和解答各种问题。如下图所示中LLM与ML、DL的关系:同时,LLM还有一个可以说独有的特点,即生成式AI,这也是区别与其它传统模型或训练任务的Uniqueness,表面上看,这种技术包括用于生成文本、图像、音频和视频等各种类型的内容的模型,其关键特性是,它不仅可以理解和分析数据,还可以创造新的、独特的输出,这些输出是从学习的数据模式中派生出来的。

Others are asking
AI领域,传统机器学习,nlp,深度学习,大语言模型,rag,agent,请生成一张让普通人能看懂的AI领域概念图
以下是为您生成的 AI 领域概念图的相关解释: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失。 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因为有很多层所以叫深度),神经网络可用于多种学习方式。 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
文档自动化的技术方案: OCR+NLP pipeline指的是什么,个人具体怎么实施
OCR(Optical Character Recognition,光学字符识别)+NLP(Natural Language Processing,自然语言处理)pipeline 是一种将 OCR 技术和 NLP 技术相结合的文档自动化处理流程。 OCR 用于将文档中的图像或扫描的文字转换为可编辑的文本。 NLP 则对转换后的文本进行分析、理解和处理,例如提取关键信息、分类、情感分析等。 对于个人实施 OCR + NLP pipeline,大致可以按照以下步骤进行: 1. 选择合适的 OCR 工具和服务:有许多开源和商业的 OCR 工具可供选择,根据您的需求和技术能力进行评估和选用。 2. 准备数据:收集和整理需要处理的文档,并确保其质量适合 OCR 处理。 3. 进行 OCR 处理:使用选定的 OCR 工具对文档进行转换。 4. 选择 NLP 框架和模型:根据具体的任务和需求,选择适合的 NLP 框架和预训练模型。 5. 数据预处理:对 OCR 输出的文本进行清洗、预处理,以便 NLP 模型能够更好地处理。 6. 训练和优化 NLP 模型(如果需要):如果通用模型不能满足需求,可以使用标注数据进行训练和优化。 7. 集成和部署:将 OCR 和 NLP 部分集成在一起,并部署到实际应用环境中。 需要注意的是,实施过程中可能会遇到一些技术挑战,例如文档格式的复杂性、OCR 识别的准确性、NLP 模型的适应性等,需要不断调试和优化。
2025-02-08
NLP是什么
自然语言处理(Natural Language Processing,NLP)是研究人与计算机之间使用自然语言进行有效通信的领域。它希望机器能具备像人一样的语言理解能力。 “自然语言”是人类发展过程中形成的信息交流方式,包括各种语种。“处理”包含对自然语言的形、音、义等信息进行理解、转化、生成等操作和加工,如对字、词、句、篇章的输入、输出、识别、分析、理解、生成等。 NLP 的用途广泛,如文字校对、信息检索、机器翻译、问答系统、聊天机器人、文章摘要、舆情监测、情绪分析等都涉及到相关技术。 其技术原理按照内容构成的层次,可分成 5 个层次: 1. 词法分析:找到词汇的各个词素,获取语言学信息。 2. 句法分析:分析句子和短语的结构,找出词、短语等的相互关系及在句中的作用。 3. 语义分析:确定词义、结构意义及其结合意义,明确语言所表达的真正含义或概念。 4. 篇章分析:分析篇章结构,识别不同部分之间的语义联系,结合内外部信息整体理解篇章。 5. 内容生成 在人工智能学科下,自然语言处理(NLP)包含了自然语言理解(NLU)和自然语言生成(NLG)。 1. NLP:涉及各种技术和方法,使计算机能够分析、理解和生成人类语言,实现人机交互的自然化。 2. NLU:专注于让计算机理解人类语言的含义,能够识别文本中的情感、意图和实体,并转化为结构化信息。 3. NLG:专注于让计算机生成人类可以理解的语言,将结构化数据转化为自然语言文本,能根据不同需求和场景生成不同风格和语气的文本。 在深度学习和自然语言处理(NLP)中,Embedding 是一种特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量,目的是降低数据的抽象和复杂性,帮助模型理解语义关系。例如在电影推荐系统和文本分类中都有应用。
2024-11-18
你是ai领域专家,我是新手小白,给我一些入门nlp的系统性建议
以下是给您的入门 NLP 的系统性建议: 自然语言处理(NLP)是人工智能领域的重要分支,其起源早于“人工智能”概念的诞生,艾伦·图灵在开创性论文《计算机器与智能》中提出的“图灵测试”是该领域被广泛认可的起点。这个概念涵盖了自然语言理解(NLU)和自然语言生成(NLG)两大核心领域。 对于新手入门 NLP,首先要理解 NLP 的基本概念和发展历程,了解其在人工智能中的重要地位。深入学习“图灵测试”的理念,体会让计算机与人类自然流畅对话的目标。 重点掌握 NLU,学会让机器准确理解人类语言的复杂性和微妙之处。同时关注 NLG,研究如何让机器生成流畅、自然、符合语境的人类语言。 通过实际案例和项目实践,加深对 NLP 核心领域的理解和应用能力。
2024-11-18
nlp入门建议
以下是关于 NLP 入门的建议: NLP(自然语言处理)是人工智能领域中重要的分支,其起源早于“人工智能”概念的诞生,艾伦·图灵在其开创性论文中提出的“图灵测试”是重要起点。 NLP 包含了自然语言理解(NLU)和自然语言生成(NLG): 1. NLP:涉及各种技术和方法,使计算机能够分析、理解和生成人类语言,目标是实现人机交互的自然化。 2. NLU:专注于让计算机理解人类语言的含义,能够识别文本中的情感、意图和实体,并转化为计算机可理解的结构化信息。 3. NLG:专注于让计算机生成人类可以理解的语言,将结构化数据转化为自然语言文本,能根据不同需求和场景生成不同风格和语气的文本。 如果想学习更多人工智能知识,欢迎持续关注相关内容。
2024-11-18
NLP 是什么意思
神经网络、反向传播和嵌入是自然语言处理(NLP)的基础概念,以下资源可帮助你理解这些概念以及机器学习和 AI 的基础知识: 1. 课程: :这是 Andrew Ng 的机器学习入门课程,内容涵盖了机器学习的基础知识。 :这是 Chris Manning 的深度学习自然语言处理(NLP)课程,通过第一代 LLM 介绍了 NLP 的基础知识。 这些课程提供了深度学习和 NLP 的基础理解,适合初学者和希望深入了解该领域的人。
2024-05-23
我刚刚对open ai有了基本理解,我该如何进阶学习
以下是为您提供的进阶学习 OpenAI 的建议: 1. 系统学习 API 相关知识:深入了解 API 的工作原理、接口规范、数据传输等方面的内容。 2. 实践练习:在网上寻找可用的 API 进行实际操作和练习。 3. 挖掘 GPT Action 的更多潜力:探索其更多的功能和应用场景。 4. 构建知识体系:通过不同的教程和资料,识别知识之间的共性和逻辑关系,深化对主题的理解。 5. 了解 OpenAI 的模型数据和训练:例如 GPT4.5 是通过扩展无监督学习和思维链推理等范式来提升 AI 能力,以及新的对齐技术如何促进更好的人机协作等。 6. 参考相关资料:查看官方 cookbook、万字长文回顾等历史脉络内容,以及入门经典必读和面向开发者的文章。 7. 从国内模型工具入手:先熟悉国内免费的模型工具,例如从提示词开始学习。掌握结构化提示词的优势,学会清晰地与模型对话。
2025-03-10
我是一名电商工作者,主要负责产品图的图片设计,我该怎么学习AI,能给我带来效率和品质上的提高?
以下是为您提供的学习 AI 以提高电商产品图设计效率和品质的建议: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速获取关键信息,如受欢迎的产品、价格区间和销量等,以便在设计中更好地把握方向。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品图的标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具,根据市场趋势和用户偏好自动生成吸引人的产品页面布局,为产品图的展示提供良好的框架。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,与产品图相互配合,提高转化率。 5. 图像识别和优化:运用 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点,吸引顾客。 6. 价格策略:通过 AI 分析不同价格点对销量的影响,制定合理的价格策略,在产品图中体现价格优势。 7. 客户反馈分析:借助 AI 分析客户评价和反馈,了解客户需求,优化产品图和服务。 8. 个性化推荐:利用 AI 根据用户的购买历史和偏好提供个性化的产品推荐,在产品图设计中突出个性化元素。 9. 工具能力提升:对现有 AI 工具进行严格评估和选型,确保其能提供标准化输出和一致性体验,提升设计质量和速度。 10. 工作流程优化:将 AI 深入到日常设计流程中,形成新的工作方式与流程,针对 AI 的特性优化每一个环节,实现效率和创意品质的最大化。 同时,您还可以参考以下成功案例: 1. Show Me 扣子 AI 挑战赛大消费行业专场的三等奖作品,为电商卖家提供全面的图片处理服务,包括 AI 商品图、AI 场景图、AI 模特、AI 素材、AI 海报等。利用先进 AI 技术,帮助卖家无需专业设计经验即可创作出独特且充满想象力的优质素材,且创作素材可商用,有助于提升商品出单率。 2. 大淘宝设计部 2023 年度 AI 设计实践报告中提到,未来设计师要具备持续的学习习惯,将 AI 深入日常设计流程,设计团队要制定并执行明确的 AI 融合策略等。 总之,随着技术的不断进步,AI 在视觉设计领域将扮演更重要的角色,为您创造更多的可能性。
2025-03-07
我想让cursor帮我编程一个能在Android studio编译的Android应用,它的主要功能是接受esp32通过websocket协议发送过来的opus数据,保存opus并把数据转换成wav,再使用sherpa-onnx语音识别成文字。我该使用什么提示词让cursor帮我写出这个Android应用?
很抱歉,目前没有适用于让 Cursor 生成您所需 Android 应用的特定提示词。编写这样一个复杂的 Android 应用需要对 Android 开发、网络通信、音频处理和语音识别等多个领域有深入的了解和专业知识。您可能需要逐步向 Cursor 描述应用的架构、各个模块的功能和实现逻辑,例如先描述如何建立与 ESP32 的 WebSocket 连接,如何接收和处理 Opus 数据,如何进行数据转换以及如何调用 Sherpaonnx 进行语音识别等。但需要注意的是,仅仅依靠提示词让 Cursor 生成完整可用的复杂应用可能具有一定的局限性,建议您在具备相关基础知识的前提下,结合 Cursor 的辅助来逐步完成开发。
2025-03-06
我想让cursor帮我编程一个能在Android studio编译的Android应用,它的主要功能是接受esp32通过websocket协议发送过来的opus数据,保存opus并把数据转换成wav,再使用sherpa-onnx语音识别成文字。我该使用什么提示词让cursor帮我写出这个Android应用?
很抱歉,目前没有关于使用 Cursor 生成您所需的这种特定 Android 应用的提示词的相关内容。一般来说,您可以向 Cursor 提供以下关键信息作为提示词的参考: 1. 明确应用的功能需求,如“编写一个在 Android Studio 中编译的 Android 应用,用于接收 ESP32 通过 WebSocket 协议发送的 Opus 数据,保存 Opus 并转换为 WAV 格式,然后使用 Sherpaonnx 进行语音识别成文字。” 2. 描述应用的技术架构和关键技术点,例如“应用需基于 Android 平台,使用合适的网络库处理 WebSocket 连接,采用有效的数据存储方式保存 Opus 数据,利用特定的音频转换库将 Opus 转换为 WAV,以及集成 Sherpaonnx 语音识别库实现文字转换。” 3. 提及开发环境和工具要求,比如“在 Android Studio 开发环境中,遵循 Android 应用开发规范和最佳实践。” 但需要注意的是,Cursor 生成的代码可能并不完全满足您的需求,还需要您进行进一步的修改和完善。
2025-03-06
我是一个ai小白,我该如何使用这个知识库
对于 AI 小白来说,使用这个知识库可以参考以下内容: 1. 了解基本概念: 大语言模型就像一个读过无数书、拥有无穷智慧的人,擅长公共知识、学识技能和日常聊天,但在工作场景下需要提示词来明确角色和专注技能,知识库则相当于给员工的工作手册。 例如设定阿里千问模型为 AI 模型,角色为“美嘉”,知识库为《爱情公寓》全季剧情,从而实现特定场景的问答。 2. 科普资源: 对于对 AI 没太多概念的纯纯小白,可以通过以下资源快速了解: 通识篇:现有常见 AI 工具小白扫盲,文章链接(1 小时 32 分开始)。 通识篇:AI 常见名词、缩写解释,文章链接。 3. 从常见工具开始体验: 工具入门篇(AI Tools):数据工具多维表格小白之旅,文章链接,适用于 Excel 重度使用者、手动数据处理使用者、文件工作者,可满足 80%数据处理需求。 工具入门篇(AI Code):编程工具Cursor 的小白试用反馈,文章链接,适用于 0 编程经验、觉得编程离我们很遥远的小白。 工具入门篇(AI Music):音乐工具Suno 的小白探索笔记,文章链接,适用于 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。
2025-03-04
我想利用ai写一篇本科毕业论文,我该怎样使用?或者说有什么对ai的指令吗?
利用 AI 写本科毕业论文时,以下是一些相关的信息和示例供您参考: 有示例表明,如果向 LLM 提供关于个人背景的信息和指令,比如“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。”,LLM 可以为您生成论文。但需要注意的是,这并非提倡这种方式是道德的使用方式。 在教育领域也有相关例子,比如一位历史老师让 GPT 参与教学。通过不同的提示方式,GPT4 能产生差异较大的结果。例如,让 ChatGPT 扮演“一个经过训练、熟悉获奖研究生和本科生论文的高级语言模型”,并要求其从自我反思和大纲开始,生成的内容质量会更好。但随着学生在优化提示方面变得更擅长,在家完成写作作业时作弊会变得更容易。不过,让 LLM 进行角色扮演也使其成为有趣的教育工具,特别是作为历史模拟器。 需要强调的是,使用 AI 辅助撰写论文时,不能完全依赖其生成的内容,应遵守学术道德和规范,确保论文的原创性和学术诚信。
2025-02-28
怎么入门AI并且找到一份相关工作
以下是入门 AI 并找到相关工作的建议: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 此外,AI 已经在许多领域带来了重大进步和效率,具有巨大的应用潜力和创造就业的能力。但也要注意,随着 AI 的发展,相关的法律法规也在不断完善,以应对可能出现的风险和问题。
2025-03-07
对于已有编程经验的人群的AI入门推荐
对于已有编程经验的人群的 AI 入门推荐如下: 书籍推荐: Python 方面: 《Python 学习手册》:名声在外。 《Python 编程》:对新手友好。 AI 方面: 《人类简史》:“认知革命”相关章节令人获益匪浅。 《深度学习实战》:梳理了 ChatGPT 爆发前的 AI 信息与实践。 课程与资源推荐: B 站 up 主“PAPAYA 电脑教室”的 Python 入门课,完全免费。 链接:https://space.bilibili.com/402780815/channel/seriesdetail?sid=2762019 Andrej Karpathy 对于大模型的讲解: 油管地址:https://www.youtube.com/watch?v=zjkBMFhNj_g B 站地址:https://www.bilibili.com/video/BV1AU421o7ob 资料库推荐:AJ 和众多小伙伴们共创的“🌈通往 AGI 之路”(飞书文档),这是当下最全的中文 AI 资料库,免费、开源、共创,包含几乎所有有价值的文档、文章、资料、资讯,并永远第一时间更新。 链接:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e
2025-03-06
清华大学 deepseek从入门到精通
《DeepSeek:从入门到精通》是清华大学新闻与传播学院新媒体研究中心出品的指南。该指南详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等。同时探讨了如何使用 DeepSeek,涵盖推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 此外,还有其他与 DeepSeek 相关的动态,如清华大学沈少阳的《DeepSeek+DeepResearch 应用报告》,以及来自不同机构的相关研究报告,如智灵动力的《DeepSeek 行业应用实践报告》、厦门大学的《2025 年大模型概念、技术与应用实践》、国海证券的《人工智能系列深度:DeepSeek 十大关键问题解读》、全球数据资产理事会的《DeepSeek 使用教程蓝皮书从入门到进阶完整指南》、北航&清华大学的《DeepSeek+DeepResearch——让科研像聊天一样简单》、中泰证券的《DeepSeek 将如何改变 AI 应用?》。
2025-03-05
入门视频
以下是为您推荐的一些 AI 入门视频: 1. 《ChatGPT 诞生记:先捞钱,再谈理想|OpenAI 翻身史》 作者/来源:林亦 LYI 总结:ChatGPT 的背后是 OpenAI 这家公司,今天我们聊聊它的理想、成果与争议。 链接: 发布日期:2023/02/10 必看星标:👍🏻 2. 《【渐构】万字科普 GPT4 为何会颠覆现有工作流》 作者/来源:YJango 总结:视频是关于 GPT 的底层原理和未来影响。将抛开技术细节,少用专业名词,在整体功能上讲解 ChatGPT 的「工作原理」「制造过程」「涌现的能力」「未来的影响」以及「如何应对」 链接: 发布日期:2023/03/15 必看星标:👍🏻 3. 《终于有人把 chatGPT 说清楚了——全网最深入浅出的 chatGPT 原理科普》 作者/来源:新石器公园 总结:本视频深入浅出的讲解了 chatGPT 的基本原理和演化过程,让你真正理解这个世界最大的变化。 链接: 发布日期:2023/05/06 必看星标:👍🏻 4. 《AI 大神 Karpathy 再发 LLM 入门介绍视频,入门必看!》 作者/来源:Karpathy 总结:详细介绍 LLM 训练的全部过程,包括预训练、有监督微调和强化学习。即使没有技术背景也可以看懂。将提供对 ChatGPT 等 LLM 完整训练流程的直观理解,包含许多示例,并可能帮助你思考当前的能力、我们所处的位置以及未来的发展方向。 链接:未提供 发布日期:未提供 必看星标:未提供 希望这些视频能够帮助您入门 AI 领域。
2025-03-05
请起草一份小白学习AI辅助修图的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是为您提供的小白学习 AI 辅助修图从入门到精通的教程大纲: 一、基础知识与基本玩法 1. 了解 AI 辅助修图的概念和基本原理。 2. 熟悉常见的 AI 修图工具和软件。 二、常见问题与注意事项 1. 风格局限性:如全是二次元风格,缺少适合特定需求的风格。 2. 图像叙事性不足:画出来的多为美少女看镜头,缺乏叙事内容。 3. 素材局限性:已有素材单一,图生图可行性低,训练泛化性差。 三、常见误区与避坑指南 1. 避免盲目依赖初始的 Embedding、CKPT 等方法,不断尝试和改进。 2. 注意训练集中人物朝向固定等问题,采取相应处理措施,如镜像处理。 四、从入门到精通的进阶玩法 1. 掌握不同的训练方法,如 Lora 等,以获得更理想的效果。 2. 学会引导 AI 画出具有前景后景区分明显的图像,如制作引导图。 五、高级卡 bug 玩法 探索一些非常规但有效的技巧和方法,以突破常规限制,实现更出色的修图效果。但需注意,此部分玩法可能存在一定风险和不确定性。 六、常见红海赛道 分析当前 AI 辅助修图在不同领域的竞争激烈程度和应用热点。 在学习过程中,还需了解以下 AI 相关的技术原理和概念: 1. 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈中学习。 深度学习参照人脑神经网络,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式。 LLM 为大语言模型,不同模型有不同擅长的任务。 3. 技术里程碑:2017 年 6 月谷歌团队发表的《Attention is All You Need》提出了 Transformer 模型。
2025-03-05
请起草一份小白学习AI应用(包括app和网站)的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是一份小白学习 AI 应用(包括 app 和网站)的入门到精通的教程,涵盖学习大纲、常见问题等方面: 一、学习大纲 1. 了解 AI 基本概念 阅读相关资料,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅 参考「」中的初学者课程,了解生成式 AI 等基础知识,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,包括图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 分享实践后的经验和成果。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用体验。 二、常见红海赛道 目前,AI 在自然语言处理、图像识别、智能推荐等领域竞争较为激烈。 三、常见问题 1. 对复杂应用的需求理解不准确,导致产品出错。 2. 技术组件的配置和整合可能遇到困难。 四、注意事项 1. 注重基础知识的学习,打牢根基。 2. 实践过程中要耐心,遇到问题多尝试解决。 五、常见误区 1. 认为 AI 学习短期内就能精通,忽略了长期积累和实践的重要性。 2. 过度依赖现成的模型和工具,缺乏对原理的深入理解。 六、避坑指南 1. 在选择学习资源时,要注意其权威性和适用性。 2. 开发 AI 应用时,要充分考虑用户需求和实际场景,避免盲目跟风。 希望以上内容对您有所帮助,祝您在 AI 学习的道路上取得成功!
2025-03-05
我想要制作一款小游戏,上架到抖音和微信,请你给我列举出需要用到的ai和软件
以下是制作小游戏并上架到抖音和微信可能需要用到的 AI 和软件: AI 方面:可以利用 AI 描述需求生成游戏代码,例如向云雀 3.5 等模型描述需求来辅助生成代码。还可以让 AI 处理图片、绘制角色形象等。 软件工具: 图像托管网站:用于上传游戏中的图片,选择无需登录、兼容性强的网站。 代码解释网站:有专门解释代码改游戏 bug 的网站,部分有免费额度。 GitHub:用于游戏发布,需要注册账号,设置游戏名,选择公共或锁定,上传文件等。 Zion:支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。 Coze:可作为后端服务。 微信开发者工具:用于微信小程序的开发。
2025-03-10
最近想要出一本书,书籍的主题是“Deepseek的应用革命:打造AI时代的竞争力”主要是面相企业家和企业高管,希望能够将知识库内容中关于企业应用的部分提炼成书,请根据知识库素材,输出一个图书内容规划和重点参考资料
以下是为您规划的图书内容和重点参考资料: 一、图书内容规划 1. 引言 介绍 AI 时代的背景和企业面临的挑战与机遇。 阐述 DeepSeek 在塑造企业竞争力方面的重要性。 2. DeepSeek 的技术创新 详细介绍 DeepSeek 最新模型 V3 与 R1 的架构创新,如混合专家(MoE)架构、多头潜注意力(MLA)等。 解释其如何提升计算效率和推理能力,打破算力壁垒。 3. 多领域的应用案例 字节跳动的新技术 OmniHuman 在视频生成方面的突破。 Coinbase 全面推动 AI 应用的实践,如在欺诈预防和客户支持等领域的应用。 4. 对企业管理的影响 探讨善于沟通上下文、明晰 AI 能力边界、合理授权并监督等管理经验如何提升 AI 协作效率。 5. 行业趋势与挑战 分析 AI 基础大模型参数量的变化趋势。 讨论初级程序员面临的职业挑战以及编程领域的颠覆性变化。 6. 未来展望 预测 DeepSeek 及相关技术在未来的发展方向和可能的创新。 二、重点参考资料 1. 《》 2. 《》 3. 《》 4. 《》 5. 《》 6. 《[零基础掌握 Deepseek》》 7. 日报 8. 日报
2025-03-08
如果我是一个只会使用大模型对话,不了解提示词逻辑,想要逐步学习ai相关知识的人,你推荐什么呢
以下是为您逐步学习 AI 相关知识的推荐: 1. 关于大模型的思考与探讨:普通用户使用大模型时,语言不是关键,核心是向量空间中的游走脉络,输出时的语言翻译是次要的,且训练语料的中英文差异在于 embedding 环节。 2. 垂类模型与大模型公式:通过合适的模型、prompt 和 test 入口表达,用大模型公式调试出好效果以替代垂类模型,但微调垂类模型可能使大模型泛化能力下降,需分场景看待。 3. 提示词的挖掘:写提示词未挖掘出大模型的天花板,还有提升空间。 4. 读书方法与提示词相关书籍推荐:读书最有效的是笨方法,不取巧,花时间读。并推荐了从数学、作家、代码、原理角度写大模型的四本书。 5. 内置思维链提示词:针对小技巧类的思维链提示词有新模型能力涌现和大模型内置两个趋势,但对于某些如 COT 这类的内置可能会改变大模型的原味,对此存疑。 6. 编写提示词的经验与思考: 原汁原味与生效元素的平衡:为得到原汁原味的效果,需考虑是否反刻某些元素;生效的小技巧大模型可能会内置,如指定角色效果有变化。 压缩与歧义的处理:找到凝练的核心概念(a)后,根据对象用不同方式(b)表达,核心在于找到准确的 a,而寻找 a 的方法目前主要是多读多泡在相关领域。 持续学习与输出:通过阅读吸收输入,转换为自己的语言输出,与大模型交互提炼精华,多输出促进吸收输入。 7. 调教 AI 和提示词: 是否需要提示词工程,是否需要学提示词:持反对观点,像打字和写作一样。方法论不是关键,不断尝试和大模型交互,便是最佳方法。 和大模型交互需要遵循规则吗:不需要。网上流传最广的提示词方法论,是“给大模型一个角色”,这是一个好的策略,但不是必须遵循的原则,甚至所有规则都不是必须遵守的。可以在提示词里面设定规则,也可以聊着聊着临时更改规则,和大模型交互时完全不需要考虑规则。要考虑的就是是否达成了目的,如果没达成,那就锲而不舍的开一个新窗口,再尝试一下。如果还是不行,换个模型。 用 Markdown 格式清晰表达问题:Markdown 通过其易读性、格式化的灵活性和信息的清晰结构,使得与大模型的交流更加高效和精确。有助于模型更好地理解用户的意图。其优势包括结构清晰、格式化强调、适用性广。 8. 小白学习指南: 第一步:要有一个大模型帐号,至少已经熟悉和它们对话的方式。推荐 ChatGPT4 及国产平替: 第二步:看 OpenAI 的官方文档:
2025-03-06
我是做私域培训的,我想知道ai对我的帮助有哪些,我准备出去创业,想要解决获客的问题,但是我没有做流量的经验,只有销售经验
以下是 AI 对您从事私域培训及创业解决获客问题可能提供的帮助: 1. 生成爆款内容:借助 AI 分析能力挖掘同品类爆款,利用 AI 工具生成电商商品图、小红书图文内容、种草短视频等,吸引潜在客户。 2. 公域阵地场景:依托视频号、抖音、小红书、公众号等平台,通过矩阵号和 IP 号的搭建,以及短视频、直播等方式获取 leads,背后涉及矩阵号工具、内容抓取分析、脚本创作、AI 剪辑、自动回复评论、无人直播工具等。 3. 私域阵地场景:在朋友圈、小红书、社群、个人 IP 方面,利用销售企微 SCRM 工具、企业智能体进行 AI 内容抓取和自动回复,实现获客转化。 此外,为您提供一些相关的近期安排和团队信息: 1. 近期安排: 商会公开课:时间暂定 2.22 日,线上直播(小鹅通/腾讯会议),主题为《AI 获客》。 重庆区域公开课:时间暂定 2.9 日,线上直播(小鹅通/腾讯会议),主题为《Deepseek 引发的商业思考》。 民营经济大讲堂:时间与讲师团商量调整,线下付费方式。 省商会公开课:时间待定,线上直播(小鹅通/腾讯会议),主题为《AI 获客》。 SaaS 平台企业公开课:时间待定,线上直播(小鹅通/腾讯会议),主题待定。 杭州市城投线下培训:时间 2 月底,针对城投内部线下培训。 2. 北京分队介绍: wb:运营一个私域资源(包括 AI)的讨论群,关注 AI 前沿动态。 祖海:在杭州,有 400 位编导和操盘手资源,做个人 IP 咨询和陪跑,以及 Ai 数字人获客。 宇竹:在多个赛道有丰富的 IP 操盘经验。 U:业余配音演员、业余歌手,擅长音频剪辑,也可简单视频剪辑。 萝卜:生图生视频剪辑均可,剪辑方面有从业经验。 李先森:星动 AI 联合创始人,致力于 AI 教育培训和 AI 商业应用。
2025-03-06
我想要一个根据我的文本生成对应视频的ai,最好是免费的。
以下为您推荐一些可以根据文本生成对应视频且有免费选项的 AI 工具: 1. Pika Labs:被网友评价为目前全球最好用的文本生成视频 AI。目前内测免费。其生成服务托管在 discord 中,操作步骤如下: 加入 Pika Labs 的 Discord 频道:在浏览器中打开链接 https://discord.gg/dmtmQVKEgt ,点击加入邀请。 在 generate 区生成:左边栏出现一只狐狸的头像就意味着操作成功了,如果没成功点开头像把机器人邀请至服务器。接着在 Discord 频道的左侧,找到“generate”子区,随便选择一个进入。 生成视频:输入/create,在弹出的 prompt 文本框内输入描述,比如/create prompt:future war,4Kar 16:9,按 Enter 发送出去就能生成视频了。也可以输入/create 后上传本地图片生成对应指令动态效果。喜欢的效果直接右上角点击下载保存到本地。如果对生成的视频不满意,可点击再次生成按钮优化效果。 2. Hidreamai(国内,有免费额度):支持文生视频、图生视频,提示词使用中文、英文都可以。文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。网址:https://hidreamai.com//AiVideo 3. ETNA(国内):由七火山科技开发的文生视频 AI 模型,可以根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps。支持中文,时空理解。网址:https://etna.7volcanoes.com/ 此外,还有以下工具供您参考: 1. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 2. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 3. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 4. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 (内容由 AI 大模型生成,请仔细甄别)
2025-03-06
想要生成一张图片 用什么ai更合适
以下为您介绍几种适合生成图片的 AI 工具及相关操作流程: 1. Stable Diffusion 模型:可根据文本指令生成图片,图片的样子取决于使用者输入的提示词,非排列组合工作模式下难以出现完全相同的两张输出图片。类似于画笔,构造出的图画取决于使用者自己的设计。在当下技术背景与现实下,利用新兴智能工具,把自己的独创性思想转化为现实作品,极大地节省了创作成本。案例中法官承认这样依靠使用者的输出设计生成的图片属于美术作品,具有独创性和智力投入,受到著作权的保护。 操作流程:使用者根据自己的审美个性,通过增删提示词、修改相关参数,得出不同的图片,最后选定。 2. Tusiart: 简明操作流程: 定主题:确定生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora,控制图片效果及质量。 ControlNet:控制图片中特定的图像,如人物姿态、生成特定文字等,属于高阶技能。 局部重绘:下篇再教。 设置 VAE:选择 840000 。 Prompt 提示词:用英文写想要生成的内容,单词、短语之间用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写想要避免产生的内容,单词、短语之间用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据个人喜好和需求选择。 3. Liblibai: 简明操作流程: 定主题:确定生成图片的主题、风格和表达的信息。 选择 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora,控制图片效果及质量。 设置 VAE:选择 840000 。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写想要生成的内容,单词、短语之间用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写想要避免产生的内容,单词、短语之间用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras,参考模型作者推荐的采样器更有保障。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据个人喜好和需求选择。 生成批次:默认 1 批。
2025-03-06