对于 AI 初学者,以下是一些可以学习的课程:
此外,还可以:
特定的机器学习云框架。例如[Azure Machine Learning](https://azure.microsoft.com/services/machine-learning/?WT.mc_id=academic-77998-cacaste),[Microsoft Fabric](https://learn.microsoft.com/en-us/training/paths/get-started-fabric/?WT.mc_id=academic-77998-bethanycheum),或[Azure Databricks](https://docs.microsoft.com/learn/paths/data-engineer-azure-databricks?WT.mc_id=academic-77998-cacaste)。如有需要,考虑以下课程:《[使用Azure Machine Learning构建和运行机器学习解决方案](https://learn.microsoft.com/en-us/training/paths/explore-azure-machine-learning-workspace/?WT.mc_id=academic-77998-cacaste)》、《[使用Azure Databricks构建和运行机器学习解决方案](https://learn.microsoft.com/en-us/training/paths/build-operate-machine-learning-solutions-azure-databricks/?WT.mc_id=academic-77998-cacaste)》。对话式人工智能和聊天机器人。这方面有一个单独的课程《[创建对话式人工智能解决方案](https://learn.microsoft.com/en-us/training/paths/create-conversational-ai-solutions/?WT.mc_id=academic-77998-cacaste)》,你也可以参考[这篇博文](https://soshnikov.com/azure/hello-bot-conversational-ai-on-microsoft-platform/)了解更多详情。深度学习背后的深层数学(Deep Mathematics)。关于这一点,我们推荐Ian Goodfellow、Yoshua Bengio和Aaron Courville合著的《深度学习》(Deep Learning)一书,该书可在https://www.deeplearningbook.org/上获取。
人工智能的商业应用案例。如需要了解这方面的信息,可以考虑学习以下两个微软的课程:《[面向商业用户的人工智能学习](https://learn.microsoft.com/en-us/training/paths/introduction-ai-for-business-users/?WT.mc_id=academic-77998-cacaste)》、《[人工智能商学院](https://learn.microsoft.com/en-us/training/paths/transform-your-business-with-microsoft-ai/)》(和欧洲工商管理学院INSEAD共同开发)。经典机器学习。这在我们的《[机器学习入门课程](https://github.com/Microsoft/ML-for-Beginners)》中有详细介绍。使用Azure认知服务(Azure Cognitive Services)来创建实用的人工智能应用。如有需要,我们建议你从以下微软课程开始学习:《[视觉](https://learn.microsoft.com/en-us/training/paths/create-computer-vision-solutions-azure-ai/?WT.mc_id=academic-77998-cacaste)》、《[自然语言处理](https://learn.microsoft.com/en-us/training/paths/explore-natural-language-processing/?WT.mc_id=academic-77998-cacaste)》、《[使用Azure OpenAI服务的生成式人工智能](https://learn.microsoft.com/en-us/training/paths/develop-ai-solutions-azure-openai/?WT.mc_id=academic-77998-bethanycheum)》等。
了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。