Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

为什么AI处理关于时间戳转化为日期时间格式的问题会出错

Answer

目前知识库中没有关于“为什么 AI 处理关于时间戳转化为日期时间格式的问题会出错”的相关内容。但一般来说,AI 在处理时间戳转化为日期时间格式出错可能有以下原因:

  1. 数据格式不规范:输入的时间戳数据可能不符合常见的格式标准,导致 AI 模型无法正确识别和处理。
  2. 模型训练不足:AI 模型可能在时间处理方面的训练数据不够丰富或全面,从而影响其对时间戳转化的准确性。
  3. 算法选择不当:所采用的转化算法可能不适合特定的时间戳格式或应用场景。
  4. 系统环境问题:例如运行 AI 处理的硬件或软件环境存在异常,影响了处理过程。

以上只是一些可能的原因,具体情况还需要根据实际的场景和数据进行详细分析。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
我想寻找可以调整文字、论文格式的ai网站
以下是一些可以调整文字、论文格式的 AI 网站: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. Latex:虽不是纯粹的 AI 工具,但用于学术论文排版,有许多 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,可重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 较受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2025-03-28
怎么用图生成png格式的新图
以下是用图生成 PNG 格式新图的方法: 使用 Stable Diffusion: 1. 若在网上看到好看的大佬的图,将其导入 SD。若能识别,右边会自动弹出照片的信息,包括正面关键词、负面关键词,还有其他种子、大模型等信息。 2. 复制这一大串信息,来到“文生图”页面,粘贴到关键词的文本框中。 3. 点击“生成”按钮下面的第一个小按钮,SD 会自动分配信息,在有相同大模型和 Lora 的前提下,点击生成,可能得到差不多的照片。 4. 若导入照片后右边未出现生成信息,说明照片不是直接从 SD 下载下来的 PNG 格式照片,此时可使用“标签器(Tagger)”来生成照片的关键词。 使用 OpenAI 的图像生成端点: 1. 图像生成端点允许在给定文本提示的情况下创建原始图像,生成的图像大小可为 256x256、512x512 或 1024x1024 像素,较小尺寸生成速度更快。可使用参数一次请求 1 10 张图像。描述越详细,越有可能获得想要的结果,也可在 DALL·E 预览应用程序中探索示例获取更多提示灵感。 2. 图像编辑端点允许通过上传蒙版来编辑和扩展图像。遮罩的透明区域指示应编辑图像的位置,提示应描述完整的新图像,而不仅仅是擦除区域。上传的图片和遮罩必须是小于 4MB 的正方形 PNG 图片,且尺寸相同。生成输出时不使用遮罩的非透明区域。
2025-03-27
用女生台湾腔,生成一段wav格式的音频"我在,你回来了呀"
很抱歉,目前无法直接为您生成具有女生台湾腔的“我在,你回来了呀”的 wav 格式音频。但您可以通过以下几种方式来实现: 1. 使用一些专业的语音合成软件,如科大讯飞语音合成、百度语音合成等,它们通常提供多种语音风格和腔调的选择,包括台湾腔,您可以输入您想要的文本进行合成,并设置输出为 wav 格式。 2. 在一些在线语音生成平台上寻找相关服务,部分平台可能会满足您的需求。 3. 如果您有一定的音频处理能力,也可以自己录制女生说这句话的声音,然后通过音频编辑软件进行处理和转换为 wav 格式。
2025-03-24
计算两个时间差的绝对值,输出相差的完整天数。 获得用户输入的两个与时间相关的字符串,两个时间用逗号分隔,每个时间字符串格式示例如下:2018年08月01日17点21分21秒。 以此为要求写出python代码
以下是计算两个指定格式时间差的绝对值并输出相差完整天数的 Python 代码: ```python import datetime def calculate_days_difference: 解析时间字符串 time1 = datetime.datetime.strptime time2 = datetime.datetime.strptime 计算时间差 time_difference = abs 转换为天数并返回 return time_difference.days 示例用法 time1_str = "2023年08月01日17点21分21秒" time2_str = "2023年08月10日17点21分21秒" print ```
2025-03-22
如何将coze工作流大模型输出内容变成格式化的文本
要将 Coze 工作流大模型输出内容变成格式化的文本,可以按照以下步骤进行: 1. 大模型批量总结文章内容: 模型选择:默认的豆包 32k 通常够用,若担心上下文长度不足,可选择更大的模型,如 kimi128k。 配置参数:选择批处理,批处理输入参数包括第 9 步中读取的文章内容正文、第 8 步代码处理后的 url 链接和标题。下方的输入参数有四个,分别是 content 正文、title 标题、url 文章链接、author 作者。提示词输入相关内容,将这四部分一起送给大模型进行总结,最终拼接成 markdown 格式输出。 2. 汇总格式化最终输出内容:使用代码节点,将大模型输出的内容进行最终输出的格式化。参数配置方面,输入选择上一步输出的 outputList,点击「在 IDE 中编辑」,选择『Python』,输入相应代码,配置输出项为 result。 3. 公众号总结推送到微信:此节点根据 Server 酱的 API 文档,使用自建插件。主要功能是把上一步格式化好的内容推送到用户的微信上。输出配置包括:title 为汇总公众号总结页面的标题,参数值选择「输入」并起名;desp 为页面主体内容,选择上一步最终输出内容;key 引用开始节点的 key。 在循环节点方面: 1. 关于如何将文本内容转为数组:循环节点中的循环数组参数必须引用上游节点的输出参数,且参数类型为数组类型。大模型、代码等节点均支持数组格式的输出参数。若只能拿到文本格式的内容,可通过代码节点将其转为数组格式。例如在长文总结场景下,使用 LinkReaderPlugin 插件提取 PDF 内容,其输出参数 pdf_content 为 String 类型,可通过代码节点转为数组类型。还可在大模型节点通过提示词和示例让大模型直接输出数组,或使用文本处理(文本分隔)。 2. 关于如何结束循环:循环节点模式不同,结束循环的方式不同。使用数组循环时,循环节点依次对数组中的元素执行处理后自动结束并跳出循环。指定循环次数时,循环节点执行指定次数后会自动终止循环。无限循环可通过终止循环节点停止循环,条件判断节点判断某个条件成立时,流转到终止循环节点,自动跳出循环。 3. 关于如何在循环体中插入节点:选中循环体时,才能向循环体中添加新节点,或拖入新节点至循环体画布。不支持将循环体外部的节点拖动至循环体内,循环体中的节点也不可移动到循环体之外。 在大模型节点配置方面: 输入与输出的变量名称可自定义,按习惯设定以便识别字段含义。 输入:直接引用开始节点中用户输入的{{BOT_USER_INPUT}}。 提示词区域:需要两个双花括号写明需要使用的输入项参数名,如{{input}}。 输出:有几项子内容需要生成,就设置几项。为让大模型理解最终输出的形式要求,在用户提示词最后添加输出格式段落,描述每个变量名称、输出内容、输出格式,且务必注意前后完全一致,否则会输出失败。
2025-03-21
如何使用AI审核文件格式
以下是关于如何使用 AI 审核文件格式以及如何利用 AI 写课题的相关信息: 如何使用 AI 审核文件格式: Midjourney 正在测试全新的“外部图像编辑器、图像重纹理化功能”以及下一代 AI 审核系统。 1. 图像编辑器:允许从计算机上传图像,然后扩展、裁剪、重绘、添加或修改场景中的元素。还推出了“图像重纹理化模式”,可通过文本提示和区域选择来控制所有图像编辑操作,且兼容多种功能。 2. AI 审核系统:这是一个更加智能、细致的 V2 审核系统,会从整体上检查提示、图像、绘制蒙版以及生成的输出图像。但仍处于早期测试阶段,MJ 正在尽力优化其遵循的规则。 3. 使用规则:由于这些功能很新,MJ 希望给社区和人工审核团队一个适应时间。在第一个发布阶段,这些功能开放给以下社区群体: 已生成至少 10,000 张图像的用户,年度会员可用。 过去 12 个月内一直是月度订阅用户的用户。 如何利用 AI 写课题: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-03-15
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31
AI技术发展时间线,罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?
以下是关于 AI 技术发展的相关内容: AI 技术发展时间线: 从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。 具体的 AI 模型产品: ChatGPT 改变了用户习惯,从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 具体的 AI 技术创新点: 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。 Scaling Law 泛化,推理能力成为皇冠明珠,倒逼计算和数据变革。 AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 AI 技术的发展趋势: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 应用格局:第一轮洗牌结束,聚焦 20 赛道 5 大场景。 应用竞争:多领域竞速运营大于技术,AI 助手兵家必争。 应用增长:AI+X 赋能类产品大干快上,原生 AI 爆款难求。 产品趋势:多模态上马,Agent 席卷一切,高度个性化呼之欲出。 智变千行百业:左手变革生产力,右手重塑行业生态。 行业渗透率:数据基础决定初速度,用户需求成为加速度。 创投:投融资马太效应明显,国家队出手频率提升。 对用户交互体验的改变: ChatGPT 使用户从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 在文科白领方面,AI 能完成 80%到 90%的工作,如个人助理、呼叫中心、文本处理和教育等领域。 对于工科白领,特别是程序员,AI 能简化代码检索和调整。 在蓝领领域,AI 在自动驾驶方面取得显著进展。
2025-03-31
AI技术发展时间线
AI 技术的发展时间线大致如下: 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等兴起。 2024 年 AI 关键进展时间线: 2 月:OpenAI 发布视频生成模型 Sora,首次实现高质量文本生成视频,开创 AI 视频生成新纪元。 3 月:Suno 发布 V3 版本,AI 音乐生成方向进入生产力可用状态。 4 月:Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月:GPT4 发布。 5 月:RayBan 与 Meta 合作的智能眼镜销量突破百万。 5 月:字节上线即梦 AI。 6 月:快手发布可灵。 6 月:Apple Intelligence 发布。 9 月:OpenAI 发布 o1 预览版。 10 月:Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖;约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖;Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月:OpenAI 发布 o3 系列模型。 当前 AI 前沿技术点包括: 大模型(Large Language Models):如 GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 学习路径方面: 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-31
不懂得提问ai,得出的答案总是不满意,又得费很多时间自己改
以下是一些关于如何向 AI 提问以获得满意答案的建议: 1. 避免追问 AI,因为这可能导致回答越来越离谱。可以使用 ChatGPT 的 temporary chat 功能,保证 AI 在没有任何记忆的情况下生成最新鲜的回答。 2. 当 AI 回答不理想时,可以告诉它退一步,重新审视整个结构,设想从零开始如何设计,以获得更简洁、直观的解决方案。 3. 如果 AI 自己猜测并修改问题,可让它依据日志判断问题所在。 4. 对于刚开始接触 AI 的用户,很多时候答案不符合预期并非 AI 能力问题,而是用户没有把问题和要求描述清楚。在提问时要把背景描述完整,把要求解释清楚,包括细节。 5. 推荐使用 5W1H 方法充分说明信息,即说清楚为什么(Why)、做什么(What)、啥时候(When)、涉及谁(Who)、在哪里(Where)、怎么做(How)。 6. 可以使用引号、分隔符号以及“首先、其次、最后”等连接词来组织 Prompt,赋予 AI 明确的角色,如专注于民商事法律领域的律师等。 7. 按照【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】的格式进行提问。 8. 讲清楚背景和目的,例如律师在处理交通事故案件时,清晰描述案件事实、法规等。 9. 学会提出好问题,使用清晰、具体的语言,避免模糊表述,了解 AI 的工作原理和限制,以提高回答准确性。 10. 在应用 AI 之前,对工作流程进行细致拆解,将复杂任务分解成更小、更具体的环节,以便 AI 更精确执行。
2025-03-26