Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有什么关于AI的基础资料吗?

Answer

以下是关于 AI 的基础资料:

AI 生成 CAD 图相关资料

  1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关研究成果。
  2. 专业书籍:查找 AI 在 CAD 领域相关的专业书籍,了解应用和案例。
  3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程,在 YouTube 等视频平台上查找教程和演示视频。
  4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等相关论坛和社区,与专业人士交流学习,关注相关博客和新闻网站了解最新动态。
  5. 开源项目和代码库:探索 GitHub 等开源平台上的 AI 和 CAD 相关项目,例如 OpenAI 的 GPT-3、AutoGPT 等模型在 CAD 设计中的应用。
  6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例。

AI 基础知识

  1. AI 背景知识:
    • 基础理论:了解人工智能、机器学习、深度学习的定义及关系。
    • 历史发展:回顾 AI 的发展历程和重要里程碑。
  2. 数学基础:
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等基本概念。
    • 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。
  3. 算法和模型:
    • 监督学习:了解线性回归、决策树、支持向量机(SVM)等常用算法。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:了解基本概念。
  4. 评估和调优:
    • 性能评估:掌握交叉验证、精确度、召回率等评估模型性能的方法。
    • 模型调优:学习使用网格搜索等技术优化模型参数。
  5. 神经网络基础:
    • 网络结构:理解前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。
    • 激活函数:了解 ReLU、Sigmoid、Tanh 等常用激活函数。

基础学科书籍推荐

  1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。
  2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):系统介绍神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。
  3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):涵盖神经科学的方方面面,系统介绍神经生物徐的基本概念、神经系统的功能及细胞和分子机制。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:有没有关于 AI 生成 CAD 图相关的资料

关于AI生成CAD(计算机辅助设计)图的相关资料,您可以参考以下几个方面:1.学术论文:搜索相关的学术论文,了解AI在CAD领域的应用和研究成果。可以通过Google Scholar、IEEE Xplore、ScienceDirect等学术数据库进行搜索。2.专业书籍:查找与AI在CAD领域相关的专业书籍,了解AI在CAD设计中的应用和案例。3.在线课程和教程:参加相关的在线课程,如Coursera、edX、Udacity等平台上的AI和CAD相关课程。查找YouTube等视频平台上的教程和演示视频,了解AI在CAD设计中的应用。4.技术论坛和社区:加入相关的技术论坛和社区,如Stack Overflow、Reddit的r/AI和r/CAD等,与其他专业人士交流和学习。关注AI和CAD相关的博客和新闻网站,了解最新的技术动态和应用案例。5.开源项目和代码库:探索GitHub等开源平台上的AI和CAD相关项目,了解AI在CAD设计中的应用和实现。例如,OpenAI的GPT-3、AutoGPT等AI模型在CAD设计中的应用。6.企业案例研究:研究AI在CAD领域应用的企业案例,了解AI技术在实际项目中的应用和效果。例如,Autodesk、Siemens等公司在AI在CAD设计中的应用。在学习和研究AI生成CAD图的过程中,了解相关的基础知识和技术细节是非常重要的。通过阅读学术论文、参加在线课程、观看教程视频和交流学习,您可以逐步掌握AI在CAD领域的应用和实现。随着AI技术的不断发展,AI在CAD设计中的应用将会越来越广泛,为设计师和工程师提供更多的辅助和支持。

写给不会代码的你:20分钟上手 Python + AI

对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

书籍推荐:三本神经科学书籍

可能你需要的3本基础学科书籍📖AI是多学科交叉的产物,在学习和运用具体的能力时,比如学习他人的prompt模板或设计prompt,与AI协作(对话沟通)等等,有一些基础学科作为基底,或许能打开AI的新天地:1.《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。CyberDaily:想象AI像人一样思考与决策,而不是让AI像计算机输入输出。2.《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz)这本书,让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。CyberDaily:得益于神经网络的联结主义,知识并非存在于某个文档或者知识库或者在记忆区里,而是存在于知识与知识之间,这是一场流动的盛宴,而非躲藏在某个区域的金库。3.《神经生物学:从神经元到脑》(作者:John G.Nicholls等著)神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。CyberDaily:将以上两本一起食用,效果更佳,造物主设计的人脑值得细细研究和理解。

Others are asking
产品开发如何运用好AI
在产品开发中运用好 AI 可以从以下几个方面入手: 1. 辅助精读论文:利用工具如 https://scispace.com 帮助翻译、拆解公式,分析代码等。 2. 编写小脚本:如写 SQL 查询、Python 脚本、正则表达式、图片批量处理等。 3. 创作产品宣传文案:根据产品宣传渠道写营销文案、营销邮件、产品上架文案等。 4. 设计和整理调研问卷:生成调研框架,回收非结构化问卷,按指定框架生成指定表头表格。 5. 进行竞品分析:使用 BingChat 或 ChatGPT Browsering 插件,按指定框架对比各项数据,如 DAU、用户结构、市场占比等。 6. 解释专业名词:用 ChatGPT 解释很多垂直领域的缩写或行业黑话,并举例、给场景说明。 7. 优化产品逻辑和代码:写完 PRD 后,让 GPT 从产品和研发两个视角写逻辑代码,既能发现产品逻辑表达问题,也方便 QA 同学测试。 对于中小企业创新产品和服务,利用 AI 驱动的产品/服务开发可以: 1. 探索基于 AI 的新产品或服务:调查和分析市场需求,鼓励团队创新思维,开发原型并测试。 2. 利用 AI 技术提升现有产品的智能化程度:识别可优化部分,如添加智能推荐、自动化流程等,改善用户界面和交互体验,基于反馈不断迭代更新。 在阿里巴巴的营销技巧和产品页面优化方面,使用 AI 可以: 1. 进行市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况。 2. 优化关键词:借助 AI 分析和推荐高流量、高转化的关键词。 3. 设计产品页面:利用 AI 设计工具生成吸引人的页面布局。 4. 生成内容:用 AI 文案工具撰写有说服力的产品描述和营销文案。 5. 优化图像:通过 AI 图像识别技术选择或生成高质量产品图片。 6. 制定价格策略:依靠 AI 分析不同价格点对销量的影响。 7. 分析客户反馈:利用 AI 了解客户需求,优化产品和服务。 8. 提供个性化推荐:基于 AI 根据用户购买历史和偏好进行推荐。 9. 运用聊天机器人:提供 24/7 客户服务,解答疑问,提高满意度。 10. 分析营销活动:借助 AI 了解活动效果,选择更有效的活动。 11. 管理库存:依靠 AI 预测需求,优化库存。 12. 优化支付和交易:分析不同支付方式对交易成功率的影响。 13. 进行社交媒体营销:利用 AI 找到目标客户群体,精准营销。 14. 优化直播和视频营销:通过 AI 分析观众行为,优化内容。
2025-01-20
AI 产品经理
以下是关于 AI 产品经理的相关信息: 讲师介绍: 银海,AI 产品经理,通往 AGI 之路社区共建者,5+大模型厂商资深讲师,全网粉丝量 3W+,在 AI Agent、多模态大模型、企业级 AI 应用等多领域具备丰富实战经验。 招聘信息: 职责描述: 1. 负责基于通用人工智能技术(AGI)的智慧医疗诊断产品的规划、研发、发布上市的全过程管理。 2. 通过市场调研和分析,开发满足客户需求的产品或服务,为公司制定产品战略。 3. 制定并执行产品开发计划和目标,协调项目相关人员,推动产品开发工作的顺利进行。 4. 提出产品优化建议,推动产品快速迭代,并协调增长部门实现产品的持续增长。 任职要求: 1. 本科及以上学历,计算机、信息技术、工程、检验、生物科学、细胞生物学等相关专业优先考虑。 2. 具备 3 年以上产品管理经验,有医疗领域产品管理经验者、有极致产品案例者优先。 3. 在产品创新、研发、迭代改进及商业化方面有丰富的项目管理经验。 4. 对客户需求具有高度敏感度,熟悉竞品分析、定价策略。 参与同学自我介绍和分类: |序号|姓名/昵称|擅长领域/岗位|想法/方向|优势| |||||| |50|天涯|AI 创业者|AI 领域创业|软件开发经验,连续创业者| |51|Eureka|Fintech 产品经理|AI 金融领域应用|平台化产品设计经验| |52|Zima|AI 创业者|AI+教育和 AI4Science|编程能力,AI 教育探索| |53|Mr.water🐳|AI 产品经理|AI 培训经历和部分高校教授有联系|考虑科研方向转化| |58|苏白|AI 产品经理|目前在做人机交互方面的工作|产品经理专业背景,专注于人机交互领域,北京地区| |59|豆豆|AI 社交|连续创业者,过往方向从游戏,即时通讯到 AI 社交,现对 AI 社交进行深入研究|在 AI 社交领域有丰富经验,成都地区,寻求同方向交流与合作| |60|星华|AI 爱好者|曾参加两次创业大赛,获得一次一等奖、一次二等奖,寻求团队合作|虽不懂技术,但擅长项目包装,具有团队合作精神| |61|半日闲|AIPM|进群学习,提升 AI 领域知识|积极学习态度,愿意与他人交流学习| |62|丁白杨|软件公司经理|在 AI 在 to B 领域的探索|拥有 25 年企业信息化从业经验,上海地区,寻求思维碰撞与合作|
2025-01-20
AI音乐
以下是一些与 AI 音乐相关的信息: 人工智能音频初创公司: (被 Apple 收购):音乐帮助品牌与受众建立更深层次的连接。 :下一代音乐制作人。 :由 AI 驱动的软件引擎,可以生成音乐,能对手势、动作、代码或其他声音作出反应。 :全球最大的音乐教育平台。 :用于创作歌曲和音频录制的应用程序。 :提供无缝录音室体验的一体化在线协作平台。 :专业音频、语音、声音和音乐的扩展服务。 :视频编辑的音频解决方案。 :由 AI 驱动的音乐工作室。 :通过直观的软件/硬件生态系统为音乐演奏者提供世界级声音的民主化访问。 :AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 :为音乐人、制作人和内容创作者提供 AI 驱动的混音服务。 :为创作者提供的在线音乐软件,包括音乐母带处理、数字音乐发行、分期付款插件、免费样本包和协作工具。 AI 生成音乐的工具:是利用人工智能技术,特别是机器学习和深度学习算法,来创作、编排和生成音乐的软件平台。能够分析大量音乐数据,学习音乐模式和结构,然后根据用户输入或特定指令创作出新的音乐作品。推荐的 AI 音乐产品有: :由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。 :是一款革命性的人工智能音乐生成工具,通过先进的深度学习技术,能够将用户的输入转化为富有情感且高质量的音乐作品。 108 个舞蹈音乐提示词:每个提示精心制作,以有效地封装各种舞蹈音乐流派的具体特点和大气质量,同时确保适应不同的聆听环境。用这些来激发对完全遗漏的流派的描述。结合元素、流派、影响等,进一步深化舞蹈音乐的谱系。
2025-01-20
如何高质量的提问AI
以下是关于如何高质量提问 AI 的一些建议: 1. 针对具体任务进行环节拆分:例如在使用 AI 进行数据分析时,将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,便于优化性能和发现修正问题。 2. 逐步深化和细化问题:对于复杂问题,先提出宽泛问题,再根据回答进一步细化或深化,如处理知识产权侵权案件时,先问被告是否侵权,再根据回答追问侵权类型和程度。 3. 提供参考和学习内容:包括详细操作指南、行业最佳实践、案例研究等,并编写详细流程和知识(knowhow),如自动化文档处理中编写处理不同类型文档的指南。 4. 利用专业领域术语引导:在 Prompt 中使用法律术语引导 AI 回答方向,如处理合同纠纷时提示从特定方面分析合同履行情况。 5. 验证与反馈:大模型语料有滞后性,使用 AI 回答后要交叉验证确保准确性,同时结合自身专业知识筛选判断,确保符合法律伦理等。 6. 总结核心观点和注意事项:用简洁明了语言概括,如提供法律建议时可总结出核心观点和注意事项,并使用特定连接词组织 Prompt。 7. 设定角色和任务目标:赋予 AI 明确的角色和任务目标,如专注于民商事法律领域且擅长特定方面的律师,以提升工作效率。 8. 讲清楚背景和目的:提问时梳理清楚背景信息和目的,如处理交通事故案件时说明案件事实和法规,帮助 AI 理解上下文提高准确性。 9. 学会提问:使用清晰具体语言,避免模糊表述,了解 AI 工作原理和限制,设计能提供有用答案的问题。 10. 拆解环节、切分流程:应用 AI 前细致拆解工作流程,将复杂任务分解为更小更具体环节,使 AI 执行更精确。 此外,FastGPT 是一个功能强大、易于使用的知识库问答系统,基于 LLM 技术,能理解自然语言并生成高质量答案,支持连接外部知识库获取更全面信息,有可视化工作流编排工具方便创建复杂问答场景,具备开箱即用的数据处理和模型调用功能方便快速上手,可帮助企业构建智能客服、知识库搜索、文档生成等应用。相关资源有:。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-01-20
如果从0开始学习ai
如果您想从 0 开始学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-20
ai生成的甄嬛传小视频是怎么做的
AI 生成甄嬛传小视频通常可以按照以下步骤进行: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析甄嬛传的内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据分析结果,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:利用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:使用 AI 配音工具(如 Adobe Firefly)将相关文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:运用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提升视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,在生成视频片段方面,还可以使用 Pixverse 工具,通过输入相应的提示词来生成特定的视频片段,例如“silhouette of A few strong students are bullying one student”“A cunning smile on his face,eyes become red”“Surprised expression”“He thrust out his spear and floating red ribbon wrapped around it”等。
2025-01-20
收集资料,整合网站链接
以下是关于利用 AI 收集资料和整合网站链接的相关内容: 利用 AI 收集资料: 明确文章主题后,可借助 AI 高效收集相关资讯。例如使用 Perplexity.AI,访问其网站并使用搜索功能,为获取更专业深入的结果,可启用 Pro 功能(每天有一定次数免费使用,常使用可考虑开通会员)。在搜索框输入具体 Prompt 如“查找关于 OpenAI 对马斯克言论回应的博客文章”,快速定位相关资讯。获取搜索结果后,点击回答内容下方的拷贝按钮获取引用网站链接。同理,微软的 Bing 搜索引擎等具备联网搜索功能的工具也能实现类似功能,帮助快速搜集大量资料,提升文章专业度和说服力。 整合网站链接: 1. 整理资料时,可使用月之暗面开发的 Kimi 这个 AI 会话助手。它具备读取网页内容并生成一定内容的能力,读取完毕会显示绿色标点提示。但它阅读能力有限,可能无法一次性处理大量资讯或读取某些网站内容,可分批次提供资料确保有效读取和理解。 2. 以下是一些收录 GPTs 的网站: Hallidai:,特点是索引了周日为止 𝕏 上公开提及的全部 GPTs 数据,后面会每天持续更新,用提及每个 GPTs 的点赞数最高的 tweet 作为初始的 upvotes 来展示热度,也提供了大家 upvote 自己喜欢的 GPTs 的功能,支持搜索,用 Semantic Search 的方式方便大家快速找到想要的 GPTs。 GPTStore:,特点是内容全,有搜索,有热度。 Aigenthub:,特点是有搜索,可讨论,内容全。 GPTs Hunt:,特点是 9557 GPTs。 GPTsPartner:,特点是每日更新,有搜索。 GPTseek:,特点是用户可投票筛选高质量 GPTs,有分类筛选和提交自己的 GPTs 功能,有热度,内容全。
2025-01-14
如何学习Coze?有哪些参考资料
以下是关于学习 Coze 的一些参考资料和方法: 推荐方法:可以通过 Claude + Coze 来学习。Claude 是目前最强的 AI 大模型,而 Coze 是一款 AI Agent 的衍生产品。其最大价值在于跟进当前 AI Agent 工具的发展情况、发现商业化机会以及做产品 Demo。 公开分享: 共学资料: 地址: Coze 国内版地址:https://www.coze.cn/home Coze 海外版地址:https://www.coze.com/home 在学习 RAG 的过程中,可以先通过 Claude 帮助了解细节概念,然后通过 Coze 搭建 Demo 来实践学习。此外,还创建了一些相关的 Bot,如产品资料问答机器人等。如果对数据库概念有困惑,可参考。
2025-01-08
有没有coze的学习资料
以下是关于 Coze 的学习资料: Coze 国内版地址:https://www.coze.cn/home Coze 海外版地址:https://www.coze.com/home 此外,还有以下相关内容: 胎教级教程:万字长文带你理解 RAG 全流程中关于用 Coze 学习 RAG 的部分。 2024 年 5 月 24 日 Coze 共学活动前两天的教程和录播: 《》 《》 《》 《》
2025-01-07
AI信息交流教程 主要用于论文写作 资料查找
很抱歉,目前知识库中没有关于“AI 信息交流教程用于论文写作和资料查找”的相关内容。但一般来说,在进行论文写作和资料查找时,您可以从以下几个方面入手: 1. 明确研究主题和问题:确定您想要探讨的 AI 领域的具体方向和关键问题。 2. 选择合适的数据库和搜索引擎:例如学术数据库(如 Web of Science、Scopus 等)、专业的 AI 研究网站等。 3. 制定有效的检索策略:使用准确的关键词、布尔运算符等提高检索的准确性。 4. 评估资料的可靠性和相关性:注意来源的权威性、出版日期等。 5. 学会引用和整理资料:遵循学术规范,正确引用和整理所找到的资料。 希望以上建议对您有所帮助。
2025-01-05
搜索所有deepseek相关资料
以下是关于 DeepSeek 的相关资料: DeepSeek 网址:https://www.deepseek.com/zh 。它很方便,国内能访问,网页登录方便,目前完全免费。新手推荐使用,您只需要获得游戏代码即可。点击开始对话,左边选择代码助手,直接向其许愿。 5 月 7 日的 XiaoHu.AI 日报中提到,DeepSeek 发布 2360 亿参数的 DeepSeekV2,它是 60 位专家混合开源模型,数学、编码和推理表现出色,有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。详细介绍:https://xiaohu.ai/p/7468
2024-12-31
AI赋能英语学习资料
以下是关于 AI 赋能英语学习的资料: 智能辅助工具:利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错,帮助改进英语表达和写作能力。 语音识别和发音练习:使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获取实时反馈和建议。 自适应学习平台:使用自适应学习平台(如 Duolingo),借助 AI 技术量身定制学习计划,提供个性化学习内容和练习。 智能导师和对话机器人:利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提升交流能力和语感。 中考英语方面: AI 在英语各题型表现优异,如阅读理解、7 选 5、完形填空、语法填空等基本接近满分,作文扣分稍多,总分得分率在 90%以上,且模型升级后能力更强。 AI 辅导学英语具有可行性和诸多优势,包括个性化、保障教学质量、免费等,但要掌握使用的思维和方法。 用 AI 辅助中考英语读写学习,要注重方法和环节分析。 此外,9 月 2 日徐阳谈辅助英语学习时提到: 学英语要根据个人目的和需求选择不同的学习路径。 多邻国更适合 B2 以下水平,Call Annie 或 PI 练口语存在学习反馈不足、对话不够口语化、难找到可持续交流话题等问题。 目前的 AI 口语练习工具还只是伙伴,发展成导师可能需要半年以上时间。 英语学习重点是“有效输入”,然后是理解后输出,可以尝试不开字幕听优质播客、每天熟读并背诵短文等方法。
2024-12-27
我想尝试做一个初级ai项目 我是零基础 需要你告诉我每一步要做什么
如果您是零基础想尝试做一个初级 AI 项目,以下是每一步的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习。 3. 选择感兴趣的模块深入学习: 根据自己的兴趣选择特定的 AI 模块(比如图像、音乐、视频等)进行深入学习。 掌握提示词的技巧。 4. 实践和尝试: 理论学习之后,进行实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式。 如果您想开发一个 AI 网站项目,具体步骤如下: 1. 需求分析与代码生成:明确项目的目标和需求,让相关工具生成代码。 2. 环境配置自动化:选择合适的技术(如 Vue+TypeScript),无需手动打开终端配置环境。 3. 问题诊断与修复:可能会出现报错,将报错信息返回给相关工具进行自动检查和修复。 4. 界面优化与细节打磨:优化导航栏等细节,插入细节图片,不断调整。 5. 功能迭代与完善:逐步完善项目功能。 如果您想成为一名 AI 提示词工程师,需要具备以下能力: 1. 岗位技能要求:市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象出来集成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 2. 学习方法: 对于零基础小白,可在网上找基础课程学习。 观看科普类教程。 阅读 OpenAI 的文档,理解每个参数的作用。 推荐使用一些练手的 Prompt 工具和相关教程文档。
2025-01-18
关于AI的基础理论
AI 的基础理论包括以下方面: 背景知识:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI,建议: 了解 AI 基本概念:首先,阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支及它们之间的联系,浏览入门文章。 开始 AI 学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后进行实践,尝试使用各种产品做出作品,在知识库分享实践成果。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 AI 技术的发展历程和前沿技术点: 发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2025-01-17
零基础怎么学ai
对于零基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还有一些个人的学习经历供您参考: 二师兄来自上海,计算机零基础。2024 年 2 月在售后群接触到 AI 绘画,下载安装包和教学视频后迈出第一步。3 月啃完教程并开始炼丹,4 月探讨 AI 变现途径,5 月因工作变动在无硬件支持下继续学习。 参加「AI 编程共学」活动,如 10 月 28 日麦橘分享的 0 基础做小游戏,10 月 29 日梦飞分享的 0 编程基础入门 Cursor 极简使用指南,10 月 30 日银海分享的 0 基础学做 AI 拍立得等。
2025-01-16
AGI基础学习
以下是关于 AGI 基础学习的相关内容: YoYo 的学习心得: 学习前状态:不理解 AI 和提示词工程,作为文科生不懂代码且英语差,注册尝试各种 AI 工具走了弯路,对 ChatGPT 仅限于日常问答和 SQL 学习交互以支持工作数据提取。 学习后现状:能搓多 Agent 智能体但需进修 Python 搓更多,进行营销文案 demo 和 SQL 代码进阶学习应用,创建了 3 个图像流智能体和 2 个 Agent 智能体玩具,在公司实践智能客服从创建到应用,学习 Dr.kown 并尝试图像流和企业智能体实践。 学习路径:关键词为“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”,学习路径像游戏通关,强调学以致用,通过学习分享填补知识缝隙成长。 通往 AGI 之路知识库使用指南: 智能纪要: AE 软件的功能及学习路径:AE 可通过图层软件抠元素加插件做特效,与 AI 结合运用,有其他应用如处理视频画面等。学习路径可在 B 站自学或从包图网下载工程文件学习。 AE 软件的使用与创作分享:学习方法包括拆解视频等,AE 与 AI 关系密切,分享了自制短剧及未来分享计划。 「AI 编程共学」活动: |时间|分享材料|话题内容|分享人| ||||| |10 月 28 日 20:00 开始(回放链接: )|通往 AGI 之路增量小游戏 https://muykeee.github.io/waytoagiincremental/ 转生之我是野菩萨 https://muykeee.github.io/wildpusaincremental/|0 基础做小游戏分享: 通往 AGI 之路增量小游戏 转生之我是野菩萨|麦橘| |10 月 29 日 20:00 开始(|0 编程基础入门 Cursor 极简使用指南|梦飞| |10 月 30 日 20:00 开始(回放链接)| AI 拍立得:小程序:Pailido|0 基础学做 AI 拍立得: Coze 工作流实现手把手教学 AI 拍立得开源代码开箱即用|银海| |10 月 31 日 20:00 开始(回放链接)||0 基础做小游戏分享: 猪猪🐷撞南墙|南墙|
2025-01-16
ai 基础知识学习
以下是新手和中学生学习 AI 基础知识的方法和建议: 新手学习 AI : 1. 了解 AI 基本概念:阅读「」,熟悉术语和基础概念,了解主要分支及联系。 2. 浏览入门文章:了解 AI 的历史、应用和发展趋势。 3. 开始学习之旅:在「」中找到初学者课程,推荐李宏毅老师的课程。也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 4. 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块,掌握提示词技巧。 5. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品创作,分享实践成果。 6. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 中学生学习 AI : 1. 从编程语言入手:学习 Python、JavaScript 等编程语言,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用工具和平台:使用 ChatGPT、Midjourney 等生成工具,探索百度“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习基础知识:了解 AI 基本概念、发展历程、主要技术及在各领域的应用案例。 4. 参与实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试用 AI 技术解决实际问题,培养动手能力。 5. 关注前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 对未来社会的影响。 对于希望继续精进的学习者,还可以尝试了解以下 AI 基础内容: 1. AI 背景知识:包括基础理论、历史发展。 2. 数学基础:统计学基础(如均值、中位数、方差)、线性代数(向量、矩阵)、概率论(条件概率、贝叶斯定理)。 3. 算法和模型:监督学习(线性回归、决策树、支持向量机)、无监督学习(聚类、降维)、强化学习。 4. 评估和调优:性能评估(交叉验证、精确度、召回率)、模型调优(网格搜索)。 5. 神经网络基础:网络结构(前馈网络、卷积神经网络、循环神经网络)、激活函数(ReLU、Sigmoid、Tanh)。
2025-01-16
AI基础
以下是关于 AI 基础的相关内容: 书籍推荐: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统涵盖认知神经科学的多个方面。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):能让您系统了解神经元的细胞和分子生物学等内容。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的世界级名著,涵盖神经科学的方方面面。 新手学习 AI 的方法: 1. 了解 AI 基本概念:阅读「」,熟悉术语和基础概念,了解其主要分支及联系,浏览入门文章。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 AI 的技术历史和发展方向以及前沿技术点: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的,同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-16