Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

关于AI的基础理论

Answer

AI 的基础理论包括以下方面:

  • 背景知识:了解人工智能、机器学习、深度学习的定义及其之间的关系。
  • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  • 数学基础
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等线性代数基本概念。
    • 概率论:基础的概率论知识,如条件概率、贝叶斯定理。
  • 算法和模型
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:简介强化学习的基本概念。
  • 评估和调优
    • 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。
    • 模型调优:学习如何使用网格搜索等技术优化模型参数。
  • 神经网络基础
    • 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。
    • 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。

对于新手学习 AI,建议:

  • 了解 AI 基本概念:首先,阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支及它们之间的联系,浏览入门文章。
  • 开始 AI 学习之旅:在「入门:AI 学习路径」中找到为初学者设计的课程,特别推荐李宏毅老师的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习。
  • 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。
  • 实践和尝试:理论学习后进行实践,尝试使用各种产品做出作品,在知识库分享实践成果。
  • 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。

AI 技术的发展历程和前沿技术点:

  • 发展历程:
    • 早期阶段(1950s - 1960s):专家系统、博弈论、机器学习初步理论。
    • 知识驱动时期(1970s - 1980s):专家系统、知识表示、自动推理。
    • 统计学习时期(1990s - 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。
    • 深度学习时期(2010s - 至今):深度神经网络、卷积神经网络、循环神经网络等。
  • 前沿技术点:
    • 大模型(Large Language Models):GPT、PaLM 等。
    • 多模态 AI:视觉 - 语言模型(CLIP、Stable Diffusion)、多模态融合。
    • 自监督学习:自监督预训练、对比学习、掩码语言模型等。
    • 小样本学习:元学习、一次学习、提示学习等。
    • 可解释 AI:模型可解释性、因果推理、符号推理等。
    • 机器人学:强化学习、运动规划、人机交互等。
    • 量子 AI:量子机器学习、量子神经网络等。
    • AI 芯片和硬件加速。
Content generated by AI large model, please carefully verify (powered by aily)

References

写给不会代码的你:20分钟上手 Python + AI

对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

Others are asking
ai是不是下一个互联网泡沫?
目前对于 AI 是否是下一个互联网泡沫存在不同的观点和讨论。 一方面,YC 的分享探讨了当前 AI 热潮是否是炒作,并强调了投资者对 AI 的信心与市场的复杂性。尽管有对泡沫的担忧,一些早期基金仍积极投资 AI 项目,认为小型创业公司能快速增长且具备盈利潜力。YC 认为,当前的 AI 浪潮与过去的互联网泡沫不同,成功依赖于优秀的创始人和可持续的商业模式。投资者应关注长远价值,而非短期炒作。 另一方面,个人总结认为当前 OpenAI 虽然估值高但还没盈利,是否会成为泡沫是一个可讨论的话题。就大模型创业而言可能会成为泡沫,但 AI 应用不会,还是认可这是堪比移动互联网的红利。同时,2024 下半年会有一批有代表性的 AI 应用跑出来。比如在社交和游戏中的 agent 智能体应用,能实现模拟现实的养成。 总之,对于 AI 是否是泡沫的判断尚无定论,还需综合多方面因素进行考量。
2025-03-28
想进入AI 这个赛道,有啥搞钱方式
以下是进入 AI 赛道的一些搞钱方式: 1. 参加“城市狂想”文旅短视频创意大赛: 该大赛由百度百家号主办,国内最大 AI 开源社区通往 AGI 之路协办,于 8 月 27 日正式开启。 无论个人、团体还是机构,AI 视频创作者或普通自媒体创作者,都可选择适合的分赛道参与,奖金池达 60000 元。 优质作品有机会获得单项 10000 元奖金及百+助推,还有机会获得地方政府/媒体扩圈传播,百度 APP 城市频道商业 banner 推荐。 针对零基础/技术欠缺的朋友,下周将在社区开设线上直播课程,由行业内顶尖的 AI 艺术家手把手教学如何制作 AI 文旅宣传片。 报名方式: 第一步,报名,填写右侧报名链接,本赛道为实名制,未报名作者不参与评奖。https://www.wjx.top/vm/w2oCF2q.aspx 第二步,投稿,在百家号创作者后台/百度 APP,带话题城市狂想发布符合活动要求的视频内容。(允许同一作者投稿多个参赛作品,或参与多部参赛作品制作。) 第三步,提交作品,填写右侧提交作品链接。https://www.wjx.top/vm/wvfqf2f.aspx 2. 运营 AI 创作账号: 变现方式:分为通过官方蒲公英平台接单和主流媒体约稿。蒲公英平台会收取 10%手续费,行业 AI 视频价格一分钟约 2.5 万到 4 万,主流媒体约稿稿费可能较低但有背书作用。 平台选择:推荐小红书和 B 站。小红书从种草平台逐渐变为知识社区,其知识属性适合 AI 创作者,视频号也值得做但经验分享较少。 内容形式:小红书能发视频就发视频,小红书的视频 UI 界面改版且推送机制变化,后续可能重点发力视频。 账号赛道:起号前期可用妖魔鬼怪类内容,但后期要扭转账号标签,此类账号变现方式窄,做账号要有价值,不能割韭菜,要把 AI 生态圈做大。 账号搭建与运营: 头像设计:要有记忆点和视觉冲击力,能让人记住。 名称选择:要独特,能体现个人或内容特点。 简介撰写:要有哲理或引人思考的话语,能吸引用户。 封面统一:要统一且具有账号属性,体现商业化。 追热点策略:账号初期应追热点,如对热门内容进行分析和跟风创作。 获取信任:做 IP 最终要赢得用户信任,用户信任能增强其对推荐内容的关注度。 3. 运营 AI 视频号: 保持日更:起号阶段至少两天一更,每天半小时就能完成 20 秒的简单内容制作,持续更新让平台看到创作者的诚意。 选择赛道:资讯类不做,选择 AI 视觉冲击力、利他的内容,有 AI 基础可做教程。 寻找对标:起号阶段要找 10 个对标的账号,参考其内容和模式。 克服心理:出镜做 IP,不要有容貌焦虑,长得丑或有特点都能有流量,要克服不敢出镜的心理。 蹭取热点:蹭经过平台验证有流量的热点,如黄油小熊,根据热点抄学制作,同时注意热点的舆论导向和合规性。 其他经验: 获取视频教程:可在 vtwoagi.com 网站的飞书知识库中获取 AI 视频创作教程。 应对抄袭方法:在抄袭者评论区留言指出,或找朋友点赞将评论顶上去,为自己账号引流。 特效视频长度:建议控制在 1 分钟内,不建议做费时费力的剧情或故事片。 账号限流处理:视频号限流建议重新起号,小红书限流可日更 10 天尝试。 内容商业价值:内容有商业价值的标准是甲方或品牌愿意投钱,如靠播放量或带货分成有收入。 封面获取渠道:可从堆友、吉梦、小红书等获取封面素材。 蹭取平台热点:做哪个平台就蹭哪个平台的热点。 寻找对标账号:在小红书创作者平台的成长榜样中可找到对标账号。 账号标签查看:在小红书创作者后台可查看账号是否被打上标签。 内容发布时间:8 点到 10 点、2 点到下午 5 点、7 点到 8 点较为合适。
2025-03-28
推荐些AI文章
以下是为您推荐的一些 AI 文章: 1. 《新手如何学习 AI?》 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支及联系。 浏览入门文章,了解历史、应用和发展趋势。 开始 AI 学习之旅:在「」中有为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习,比如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:理论学习后通过实践巩固知识,在知识库分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动。 2. 《01通往 AGI 之路知识库使用指南》 包括关于 AI 知识库使用及 AIPO 活动的介绍,AIPO 线下活动及 AI 相关探讨,way to AGI 社区活动与知识库介绍,关于 AI 知识库及学习路径的介绍,时代杂志评选的领军人物,AI 相关名词解释,知识库的信息来源,社区共创项目,学习路径,经典必读文章,初学者入门推荐,历史脉络类资料等内容。 3. 《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》 上篇文章解决了 Why 的问题,此次解决 What 和 How 的问题。 推荐两个视频: 【包教包会】一条视频速通 AI 大模型原理_哔哩哔哩_bilibili](女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课,50 分钟速通 AI 大模型原理。 ,某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,内容值得观看。
2025-03-28
推荐些AI文章
以下是为您推荐的一些 AI 文章: 1. 《新手如何学习 AI?》 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支及联系。 浏览入门文章,了解历史、应用和发展趋势。 开始 AI 学习之旅:在「」中有为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习,比如图像、音乐、视频等。掌握提示词技巧。 实践和尝试:理论学习后通过实践巩固知识,在知识库分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 2. 《01通往 AGI 之路知识库使用指南》 包括关于 AI 知识库使用及 AIPO 活动的介绍,AIPO 线下活动及 AI 相关探讨,way to AGI 社区活动与知识库介绍,关于 AI 知识库及学习路径的介绍,时代杂志评选的领军人物,AI 相关名词解释,知识库的信息来源,社区共创项目,学习路径,经典必读文章,初学者入门推荐,历史脉络类资料等内容。 3. 《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》 由 Allen 撰写,旨在帮助入门同学建立框架。推荐了两个视频: 【包教包会】一条视频速通 AI 大模型原理_哔哩哔哩_bilibili](女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课。 ,某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频。
2025-03-28
短视频文案创作哪个AI能力最强
在短视频文案创作方面,以下几种 AI 能力表现较为突出: Kimi:作为国产大模型,在对中文的理解和写作能力上有一定优势。例如在修改文案使其更押韵方面能有不错的表现。 ChatGPT:能根据具体需求进行写作,作品有其特点。 美趣 AI:具有图片生成和写作生成的功能。 说得相机提词器:是一款写作软件。 AI 智能写作:原生的写作软件。 创客贴 AI:具备平面设计和文案生成的能力。 图趣 AI:原生的图片生成工具。 Molica AI:原生的图片生成工具。 文案宝:原生的个人助理,能进行 AI Bot 智能写作和识图。 此外,在一些挑战赛中,如 Show Me 扣子 AI 挑战赛大消费行业专场中,“营销文案创作专家深度版”能够为企业营销团队等提供从文案框架创作到生成的一站式服务,并进行营销数据分析。
2025-03-28
AI切磋大会
AI 切磋大会是 WaytoAGI 每月举办的 AI 视频、绘画、音乐、agent 等多方面的切磋交流分享会。 第五期于 8 月 31 日举办,主题为“AI 摆摊+项目路演展示”,线下在北上广深杭郑州武汉南京成都重庆长沙厦门西安昆明大理 15 地云聚会,线上同学可加入会议或围观,成果展示,有前四期活动记录,照片收集空文档届时欢迎大家上传,相关链接:。 第四期于 7 月 28 日举办,主题为“AI 技能交换(AI 摆摊赚钱)”,有前三期活动记录,线下在北上广深杭郑州武汉南京成都重庆长沙厦门西安昆明大理 15 地云聚会,活动已结束,可线上参与,成果展示,照片收集空文档届时欢迎大家上传,相关链接:。 第八期于 11 月 30 日举办,主题为“GameJam”,大家一起线下做游戏/应用,线下在北上广深杭郑州武汉南京成都重庆长沙厦门西安昆明大理 15 地云聚会,线上同学可加入游戏设计或围观,有具体的时间安排和相关链接,报名链接:https://waytoagi.feishu.cn/share/base/form/shrcnWZP4esOYmh8DTz63l2Nydh ,提醒注意场地位置和报名短信接收。
2025-03-28
我应该如何系统学习本站的内容,以应用为主,基础理论为辅
如果您想系统学习本站内容,以应用为主、基础理论为辅,可以参考以下步骤: 基础理论方面: 了解人工智能、机器学习、深度学习的定义及其之间的关系。 简要回顾 AI 的发展历程和重要里程碑。 掌握数学基础,包括统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 算法和模型方面: 对于监督学习,了解常用算法,如线性回归、决策树、支持向量机(SVM)。 熟悉无监督学习中的聚类、降维等算法。 了解强化学习的基本概念。 评估和调优方面: 学会如何评估模型性能,包括交叉验证、精确度、召回率等。 掌握使用网格搜索等技术优化模型参数的方法。 神经网络基础方面: 理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 关于知识库的使用,以 Agent 板块为例: 链接: 用法:从下往上看,一个一个点进去,都有视频。 注意事项:共学都有视频,都是手把手从注册开始的教学,不会就多看几遍,基本保障一个工具能调通、一个 Agent 能搭好。确实内容有点多,点进去看看哪个工具您听过就从哪个工具开始,不然太累。 链接: 用法:看了一些视频之后,您就知道您要看理论还是应用了,找到导航,想看哪里点哪里。 备注:智能千帆、阿里云百炼都是有视频的,其余没有视频。 注意事项:内容较多,您如果都看到这里了,就要考虑聚焦了,先挑一个,开始手把手一起做起来,看看能不能持续用起来,只要您开始用起来,这事儿就成啦!快捷菜单找不到的话,看这里。
2025-03-10