Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想在dify里按照一个reranker模型,推荐哪个

Answer

在 Dify 中安装 reranker 模型,推荐使用中转服务商。Dify 的部署版本中,模型需自行配置,官方和中转的都支持,但中转服务商从性价比角度更优,充点小钱就能用上各种模型,价格通常有较大折扣,20 刀普通用户能用很久,还能在不同地方使用。若没有合适的中转服务商,可使用我自用的,点击原文即可。模型设置方面,在 Dify 右上角点击设置-模型供应商,填入中转服务商提供的信息(一般包括 API base 或 Base URL 以及 key)并保存。若保存成功,回到主页面创建一个 Agent 测试,正常则大功告成。比如我填的 API base 是‘https://one.glbai.com’。

Content generated by AI large model, please carefully verify (powered by aily)

References

【0门槛】一键部署自己的Dify网站

Dify的部署版本,除了服务器是自己提供的以外,模型也需要我们自己来配置。官方和中转的都支持,不过从性价比来说的话,还是推荐中转的吧,充点小钱,啥模型都能用上,贼划算,而且一般比起官方的价格都很很大的折扣,20刀普通用户可以用很久了,还能在不同的地方使用。如果你们没有合适的中转服务商的话,可以直接用我自用的,我用了近2年了,而且拿到了比较低的价格,点击原文就可以。【模型设置】在Dify右上角,点击设置-模型供应商。找到你自己的中转服务商提供的信息,填上保存就可以了。服务商一般会给两个信息,API base(或者叫Base URL,每个中转服务商的都不一样,Dify这里直接填URL就可以,比如我填的就是‘https://one.glbai.com’),和key。如上图所示,如果能保存成功,则说明信息配置是正确的。这个时候,我们回到主页面,随便创建一个Agent测试一下,一切正常,大功告成。

Others are asking
有那些AI工具支持处理流程搭建,类似Dify那样
以下是一些支持处理流程搭建的 AI 工具,类似 Dify 那样: 1. Dify: 是一个开源的大模型应用开发平台。 结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 提供云服务和本地部署选项,满足不同用户需求。 开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为创业团队构建 MVP、企业集成 LLM 增强现有应用能力、技术爱好者探索 LLM 潜力提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 2. FastGPT:是成熟的高质量 AI 编排框架,有大量开源工作者维护,集成各种主流的模型供应商、工具及算法实现等。 3. Coze:服务端可用于在线编辑 Agent 应用,然后通过 API 方式集成。
2025-01-08
dify智能体搭建
搭建 Dify 智能体的步骤如下: 1. 理解智能体母体:智能体母体可视为智能体的原型或基础形式,是创建智能体的原始模板,通过它能衍生出众多子智能体。其设计和功能为子智能体的特定任务和特性提供基础,扩展了应用范围和多样性。 2. 准备提示词:分享了用于构建和定制子智能体的提示词,可直接复制应用到项目中以创建和优化智能体满足特定需求和目标。 3. 实践创建智能体母体: 登录后台系统,点击“工作室”按钮,进入智能体管理界面。 点击“创建空白应用”选项,选择“Agent”,输入智能体名称并点击“创建”按钮。 完成创建后,点击所创建的智能体,进入编排页面。调整模型,选择所需模型并设置温度及输出长度参数(默认输出长度通常为 512,常需调整),然后输入提示词,可使用准备好的提示词模板编排进智能体。 另外,在搭建 AI 智能体时,还可参考以下步骤: 1. 设计 AI 智能体架构。 2. 规定稍后读阅读清单的元数据:新建飞书多维表格,根据管理需要定义元数据字段,如“内容”(超链接格式,显示页面标题,可点击跳转具体页面)、“摘要”(总结内容主题、关键信息、阅读价值,并指出适合的读者群体)、“作者”、“平台”、“状态”(收藏的默认态为“仅记录”)、“发布日期”、“收集时间”等。为方便操作,可直接复制准备好的模板:
2025-01-06
如何学习dify?
以下是学习 Dify 的一些步骤和要点: 1. 部署 Dify: 可以通过云服务器进行部署。参考链接:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令在宝塔面板的终端安装,如遇到问题,可将相关代码复制给 AI 询问。 注意检查运行状态,如遇到端口被占用等问题,可按照 AI 的建议解决。 2. 配置和使用: 在浏览器输入公网 IP 进入,邮箱密码可随便填,建立知识库并进行设置。 选择模型,国内模型有免费额度,如智谱 AI,注册获取 API keys 并复制保存。 创建应用并进行测试和发布。 3. 了解 Dify 特点: Dify 是开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生成式 AI 应用。 具备强大工作流构建工具、支持广泛模型集成、有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许定义 Agent 智能体,通过 LLMOps 功能监控和优化应用性能,提供云服务和本地部署选项。 设计理念注重简单性、克制和快速迭代,为不同用户提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般个人研究可单独使用,企业级落地项目推荐多种框架结合。
2025-01-05
部署dify
以下是关于部署 Dify 的详细步骤: 1. 通过云服务器部署: 参考文档:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装,dockercompose 文件在/root/dify/docker 目录下,可学习其中文件的含义。 检查运行情况:使用 docker compose ps 命令,若 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 来解决,也可采用其他方法。 访问:在浏览器地址栏输入公网 IP(可在腾讯云服务器或宝塔面板地址栏查看,去掉:8888),邮箱密码随便填,建立知识库并设置。 选择模型:国内模型有免费额度,如智谱 AI,注册获取 API keys 并复制保存,创建应用进行测试和发布。 2. 云服务器 Docker 部署(方案二): 重装服务器系统,安装宝塔面板(可视化服务器管理),登陆凭证选自定义密码。 登陆:控制面板 服务器 查看详情,找到【应用信息】卡片,管理应用,放行防火墙端口,获取宝塔面板账号密码。 Docker 安装:登陆 bt 面板,点击左侧菜单栏【Docker】按提示操作。 安装 Dify:左侧菜单栏 文件 打开终端,根据 Dify 官方部署文档操作,敲入 git 命令复制代码,依次敲下面三个命令,出现特定结果即为成功。 使用和更新:使用与方案一相同,更新根据官方文档,在 BT 页面文件中打开终端执行相关命令,同步环境变量配置,确保.env 文件与实际运行环境匹配。
2024-12-27
dify 实现rag
Dify 是一个开源的大规模语言模型(LLM)应用开发平台,具有以下特点和优势: 1. 配备 RAG 引擎,允许用户编排从代理到复杂 AI 工作流的 LLM 应用。 2. 关键特性: 快速部署,5 分钟内可部署定制化的聊天机器人或 AI 助手。 创意文档生成,能从知识库生成清晰、逻辑性强且无长度限制的文档。 长文档摘要,可轻松对长文档进行摘要。 自定义 API,能安全连接业务知识,解锁更深层次的 LLM 洞察。 连接全球 LLM。 生产就绪,比 LangChain 更接近生产环境。 开源,可被社区广泛使用和改进。 3. 资源获取:可从 Dify 的 GitHub 仓库(https://github.com/langgenius/dify.git 和 https://docs.dify.ai/)获取源代码、文档、安装指南、使用说明和贡献指南等资源。 4. 是一个结合后端即服务和 LLMOps 理念的平台,为用户提供直观界面快速构建和部署生产级别的生成式 AI 应用,具备强大工作流构建工具、广泛模型集成、功能丰富的提示词 IDE 及全面的 RAG Pipeline 用于文档处理和检索,允许定义 Agent 智能体,并通过 LLMOps 功能对应用程序性能持续监控和优化。提供云服务和本地部署选项,满足不同用户需求。其设计理念注重简单性、克制和快速迭代,个人研究可单独使用,企业级落地项目推荐多种框架结合。 5. 官方手册:https://docs.dify.ai/v/zhhans
2024-12-25
dify-on-wechat如何接coze
要将 Dify 接入企业微信,您可以按照以下步骤进行操作: 1. 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目:下载并安装依赖。 3. 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 5. 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 另外,CoW(chatgptonwechat)是一个基于大型语言模型的智能对话机器人项目,具有多端部署、基础对话、语音识别、图片生成、丰富插件、Tool 工具、知识库等特性和优势,支持在多个平台部署,包括微信公众号、企业微信应用、飞书、钉钉等。项目开源,GitHub 地址:https://github.com/zhayujie/chatgptonwechat ,Gitee 地址:https://gitee.com/zhayujie/chatgptonwechat 。 您还可以引入项目,在 bot/dify/新建一个 dify_image.py 的程序,将画图程序的调用过程写到 dify bot 中,如用 query“画”开头接提示来触发调用。
2024-12-24
reranker
Reranker 是在 AI 搜索和相关流程中用于对检索结果进行重排的重要环节。 在 AI 搜索中,如果要做多信息源整合,就需要对多信息源的检索结果进行重排。重排的目的主要有两个:一是过滤掉跟搜索 query 不相关的参考信息,二是对参考信息的相关性进行排序,以便在做上下文挂载时,优先截取权重最高的 top_k 条记录作为引用参考。 做重排的方案有多种,例如 ThinkAny 尝试过使用 zilliz 向量数据库 + llamaindex 框架做相似度匹配,以及使用 FlashRank 开源框架,但前者效率较低,后者准确度不够高。 在基于 Notion 和 Coze 打造个人知识问答系统以及 RAG 流程中,也存在检索结果可能包含无关信息和排序并非最优的问题。为解决此问题,在 RAG 流程中加入一个 Reranker 模块对检索的信息结果进行打分和重排可以显著提高回答质量,RAG 也因此变成了 RetrieveRerankGenerate(Re2G)。在某些场景中,会直接使用 LLM 来做打分和重排。 在 RAG 中,其主要组成依次是数据提取——embedding(向量化)——创建索引——检索——自动排序(Rerank)——LLM 归纳生成。核心在于能否将内容检索得又快又准。
2025-01-07
跑本地大模型有哪些用处?
跑本地大模型具有以下用处: 1. 支持多种大型语言模型:如通义千问、Llama 2、Mistral 和 Gemma 等,可应用于不同场景。 2. 易于使用:适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU,方便在本地环境中启动和运行。 3. 丰富的模型库:提供多种不同参数和大小的模型,满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 自定义模型:能通过简单步骤修改模型的温度参数等以调整创造性和连贯性,或设置特定系统消息。 5. API 和集成:提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富:包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 Ollama 是一个开源框架,旨在简化本地运行大型语言模型的过程。它是轻量级、可扩展的,提供简单 API 创建、运行和管理模型,还有预构建模型库,降低使用门槛,适合初学者和非技术人员,适用于自然语言处理研究和产品开发。安装可通过官方下载地址 https://ollama.com/download ,安装后可通过相关链接判断是否成功。运行时在命令行输入相应命令,选择模型如 llama2 ,Ollama 会自动下载模型到本地。
2025-01-08
是不是可以跟任何大模型进行对话
一般来说,可以跟很多大模型进行对话。以下是一些常见的方式: 1. 对于 Llama3 大模型: 下载大模型主要是为了与之对话,或者称为使用其进行推理。 有两种对话方式,可使用 API 或部署简单界面。面向小白,这里主要介绍部署界面的方式。 例如,在 /root/autodltmp 路径下新建 chatBot.py 文件并输入相关内容,然后启动 Webdemo 服务,按照指示映射端口,在浏览器中打开相应链接即可看到聊天界面。 2. 对于 Llama 大模型: 首先编译,为利用 Metal 的 GPU 可用特定命令编译。 去指定网址下载模型。 llama.cpp 还提供了 WebUI 供用户使用,启动 server 后默认监听 8080 端口,打开浏览器就可以对话。 3. 对于通过 Open WebUI 使用大模型: 访问指定网址,使用邮箱注册账号。 登陆成功后,Open WebUI 一般有聊天对话和 RAG 能力(让模型根据文档内容回答问题)两种使用方式。如果要求不高,已实现通过 Web UI 与本地大模型对话的功能。 需要注意的是,不同大模型的访问速度和回答效果可能存在差异,例如 ChatGPT 访问速度快是因为其服务器配置高,回答效果好是因为训练参数多、数据更优以及训练算法更好。
2025-01-07
文生图有哪些大模型
以下是一些常见的文生图大模型: 1. SD(StableDiffusion):如 majicmixRealistic_v6.safetensors 模型,可通过设置相关提示词、参数等生成图像。 2. 快手 Kolors:这是一个基于潜在扩散的大规模文本生成图像模型,在视觉质量、复杂语义准确性以及中英文字符的文本渲染方面有显著优势,支持中文和英文输入。其相关资源包括工作流与模型地址、文档说明、项目地址等。 开源代码:https://github.com/KwaiKolors/Kolors 模型权重:https://huggingface.co/KwaiKolors/Kolors 官方页面:https://kwaikolors.github.io/ 企业页面:https://kolors.kuaishou.com/
2025-01-07
文生图模型打分的排行榜
以下是关于文生图模型打分的排行榜相关信息: SuperCLUEImage 测评基准首次公布,DALLE 3 以 76.94 分高居榜首,显示其在图像生成质量、多样性和文本一致性方面的卓越表现。百度文心一格和 vivo 的 BlueLMArt 位列国内前列,但与国际领先模型仍有差距。 在包含人工评估、机器评估的全面评测中,Kolors 具有非常有竞争力的表现,达到业界领先水平。构建了包含 14 种垂类、12 个挑战项、总数量为一千多个 prompt 的文生图评估集 KolorsPrompts。 人工评测方面,邀请了 50 个具有图像领域知识的专业评估人员对不同模型的生成结果进行对比评估,衡量维度为画面质量、图文相关性、整体满意度三个方面。Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体平均分如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。
2025-01-07
目前主流的AI大模型有哪些
目前主流的 AI 大模型主要有以下几种: 1. OpenAI 系列:包括 GPT3.5 和 GPT4 等。GPT3.5 在 11 月启动了当前的 AI 热潮,GPT4 功能更强大。ChatGPT 也属于 OpenAI 系列。 2. 微软 Bing:使用 GPT4 和 GPT3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,能创建和查看图像,还能在网页浏览器中阅读文档,并连接到互联网。 3. 谷歌 Bard:由各种基础模型驱动,最近是 PaLM 2 模型。 4. Anthropic Claude 2:其特点是有非常大的上下文窗口,不太可能恶意行事。 此外,大模型的架构也有所不同,如 encoderonly 模型(代表模型是 BERT)、encoderdecoder 模型(代表是 google 的 T5)、decoderonly 模型(适用于自然语言生成任务,如故事写作和博客生成,众多 AI 助手包括 ChatGPT 都属于此类)。大模型的“大”体现在预训练数据量大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练)和参数多(如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数)。
2025-01-07
用于训练销售助手类型业务的私有模型
以下是关于训练销售助手类型业务私有模型的相关信息: 1. 提示词方面:设计了一套模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣且有效的销售助手,吸引顾客注意。拟人化提示词母体可通过关注作者微信领取。 2. 增加私有知识方面:通过前面步骤拥有可与客户对话的 AI 助手后,若想让其像公司员工一样精准专业回答商品相关问题,需为大模型应用配置知识库。例如在售卖智能手机的公司,网站上有很多相关信息,不同机型的详细配置清单可参考相关文档。
2025-01-07
是否有推荐的RAG 框架
以下为您推荐常用的 RAG 框架: LangChain 是一个为简化大模型应用开发而设计的开源框架。它通过提供一套模块化的工具和库,允许开发者轻松集成和操作多种大模型,使开发者能将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具有良好的可扩展性,以适应不断变化的业务需求。作为一个得到社区广泛支持的开源项目,LangChain 拥有活跃的贡献者和持续的更新,同时提供了全面的文档和示例代码帮助新用户快速掌握。此外,LangChain 在设计时充分考虑了应用的安全性和用户数据的隐私保护,是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-01-08
推荐一些适合零基础的小学生、初中生学习的实用的Ai课程
以下是为零基础的小学生、初中生推荐的实用 AI 课程: 1. 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 野菩萨的 AIGC 资深课也是不错的选择,这门课程由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程。课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 4. 如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励:4980 课程一份;亚军奖励:3980 课程一份;季军奖励:1980 课程一份;入围奖励:598 野神殿门票一张。 在学习过程中,您可以根据自己的兴趣选择特定的模块深入学习,一定要掌握提示词的技巧,它上手容易且很有用。理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。同时,与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-01-08
我想要设计一个以班级期末总结为主题的40分钟班会课,请你帮我推荐一下有哪些AI软件可以完成这项任务
目前没有专门针对设计班级期末总结主题班会课的特定 AI 软件。但您可以借助一些通用的工具来辅助您完成,例如: 1. 文字处理工具,如 Microsoft Word 或 WPS,帮助您撰写班会课的流程和内容。 2. 思维导图工具,如 XMind 或百度脑图,用于梳理班会课的框架和要点。 3. 演示文稿工具,如 Microsoft PowerPoint 或 Keynote,制作展示用的 PPT 来辅助讲解。 希望这些建议对您有所帮助。
2025-01-07
儿童英文学习推荐
以下是为 4 岁儿童练习英语口语推荐的一些 AI 工具: 1. LingoDeer:这是一款通过游戏和互动活动教孩子英语的应用程序。它提供了从字母、数字到更高级语法和词汇的各种课程,还有家长仪表板,方便跟踪孩子进度和设置学习目标。 2. Busuu:另一个流行的语言学习应用,提供英语及其他多种语言课程。使用多种教学方法,包括音频课程、视频课程和互动练习,还有社区功能让孩子与世界各地的孩子练习口语。 3. Memrise:使用抽认卡和游戏教孩子英语,涵盖从基本词汇到更高级会话技巧的课程,具有社交功能可与朋友和家人一起学习。 4. Rosetta Stone:采用沉浸式方法教孩子英语,让孩子在自然环境中学习,还有语音识别功能帮助练习发音。 5. Duolingo:免费的语言学习应用,提供多种语言课程,通过游戏化方法使学习有趣。 在为 4 岁儿童选择 AI 英语口语学习工具时,需要考虑以下因素: 1. 年龄是否合适:确保应用程序适合孩子的年龄,有些针对年幼孩子,有些针对年长孩子。 2. 是否有趣且引人入胜:孩子更可能坚持使用有趣的应用,应选择有游戏、互动活动等能吸引孩子的应用。 3. 是否有效:有些应用教英语更有效,选择前阅读评论并研究。 4. 是否负担得起:有些应用免费,有些需要付费订阅,要考虑预算。 此外,Genie 模型也对低年级小学生学习有帮助: 1. 学习语言:可以用英语对话,帮助练习发音和听力,纠正错误。 2. 了解文化:能解答不同文化和国家的特色,如展示金字塔图片并讲解历史。 3. 玩游戏:创建各种游戏环境,进行赛车、解谜、探险等有趣活动。 总之,尝试不同的 AI 工具,找到最适合孩子的。随着孩子成长和发展,可能需要切换应用。
2025-01-07
视频面部替换 有什么工具推荐?
以下是为您推荐的视频面部替换工具: 1. 三思教程:https://www.xiaohongshu.com/explore/666e8bfc00000000060044aa 2. 白马少年文生图教程:https://www.xiaohongshu.com/explore/6669d3c9000000000e0300fb 3. 阿米的 VB 工作流拆解:https://www.xiaohongshu.com/explore/66699475000000000e0325cf 4. 红泥小火炉的 VB 工作流拆解:https://www.xiaohongshu.com/explore/66699e13000000000d00d236 5. 岳超楠:AI 教程丨教您如何用 comfyUI 修复脸部:https://www.xiaohongshu.com/explore/666be3ed0000000006004d88 6. guahunyo 老师的工作流: 7. Dreamina 图片生成功能:https://dreamina.jianying.com/aitool/image/generate ,上传深度图,选择适应画布比例并填写描述
2025-01-07
视频换脸有什么工具推荐?
以下为您推荐一些视频换脸工具: 1. TecCreative: 操作指引:上传原始视频——上传换脸图片——点击生成。 2. Viggle(有免费额度): 网址:http://viggle.ai discord 免费体验:https://discord.com/invite/viggle 功能: /mix:将角色图像混合到动态视频中。操作步骤:上传一张字符清晰的图片,上传一段清晰运动的视频。 /animate:使用文本运动提示为静态角色设置动画。操作步骤:上传一张字符清晰的图片,描述您想让角色做的动作(也可以从 https://viggle.ai/prompt 中复制动作提示词)。 /ideate:纯粹从文本创建角色视频。操作步骤:描述您想要创造的角色,描述您希望角色执行的动作(或从 https://viggle.ai/prompt 中复制动作提示词)。 /character:通过文本提示创建角色并将其动画化。操作步骤:描述您想要创造的角色,从四个结果中选择一个图像,描述您希望角色执行的动作(或从 https://viggle.ai/prompt 中复制动作提示词)。 /stylize:使用文本提示符重新设计角色的样式并将其动画化。操作步骤:上传一张字符清晰的图片,描述您想改变角色的任何地方来重新塑造它,从四个结果中选择一个图像,描述您想要角色做的动作(或者从 https://viggle.ai/prompt 中复制动作提示词)。 官方提供了多种动作提示词可供参考,提示词地址:https://viggle.ai/prompt 3. 插件 ADetailer: 首先要明白插件原理是识别面部对面部进行扩散,里面可以增加 controlnet 去控制。 操作步骤: 打开 Adetailer,选择模型是关于脸部修复的,选择最常用的模型,在对应的正向提示词中添加一些面部的修饰词,也可以加 lora。 在检测一栏基本上维持默认不变,效果不好适当拉高阈值。 在蒙版处理维持默认不变。 在重绘选项卡中,关注以下参数: 重绘使用的模型、重绘使用的 VAE 以及重绘制使用的采样方式。 局部重绘制强度,推荐 0.5 左右,可自行尝试。 Controlnet,和外面用的一样也是增加控制的,选择最适合的,若用 tile 模型要适当调整权重或者调整引导于结束的步数。
2025-01-07