Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想学习AI知识,应该从哪里学起呢?

Answer

对于新手学习 AI ,建议您从以下几个方面入手:

  1. 了解 AI 基本概念:首先,阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:在「入门:AI 学习路径」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。
  3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。
  5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。

Others are asking
普通人如何熟练的使用Ai
普通人要熟练使用 AI ,可以参考以下几点: 1. 提供背景信息:在使用 AI 时,尽可能为其提供详细的背景信息,以确保输出更准确和有用。 2. 让 AI 自我反思:促使 AI 对每次输出的内容进行再次思考,提高输出质量。 3. 尝试使用:对于超出自己理解范围的 AI ,最简单的方法是亲自试一试,百闻不如一练。 4. 了解 AI 能力边界:虽然目前难以明确类似 GPT4 等模型的具体能力边界,但要心中有数,避免在边界外的任务上过度依赖。 5. 接受培训:使用 AI 时接受一定的培训,能提高任务完成的效率和质量。 6. 注意协作方式:可以采用“半人马”模式,即人与 AI 紧密结合但各司其职,人类主导流程并合理调配资源;也可以向“机械人”模式发展,实现人与 AI 的高度融合,更精细化地协作和创作。 此外,尽可能简单地试用 AI ,是让普通人在 AI 发展中更快受益的好方式。
2025-01-15
如何利用Ai为我们工作
以下是利用 AI 为我们工作的一些方法: 1. 写作方面: 草拟各种初稿,如博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等,只需给出提示。 提升写作质量,将文本粘贴到 AI 中,要求其改进内容、提供针对特定受众的建议、创建不同风格的草稿、使内容更生动或添加例子,以激发自己做得更好。 帮助完成任务,如写邮件、创建销售模板、提供商业计划的下一步等。 从写作困难中解脱,让自己更有动力。 2. 获取信息和学习方面: 利用 AI 辅助教育,包括自学。可以要求 AI 解释概念,能获得较好的结果。但要注意因 AI 可能产生幻觉,对关键数据要根据其他来源仔细检查。
2025-01-15
给我一份学习Ai的大纲
以下是一份学习 AI 的大纲: 一、基础概念 1. 了解人工智能的定义、发展历程和应用领域。 2. 熟悉常见的 AI 技术和术语,如 Transformer 和 Latent Diffusion 模型。 二、技术学习资源 1. 学习相关的数学知识,如线性代数、概率论、统计学等。 2. 掌握编程语言,如 Python。 3. 学习机器学习和深度学习的基本理论和算法。 三、大型语言模型(LLMs) 1. 了解 LLMs 的原理和架构。 2. 学习如何训练和优化 LLMs。 四、AI 市场分析 1. 研究 AI 市场的现状和趋势。 2. 了解 AI 产品和服务的商业应用。 五、实际应用 1. 确定研究课题主题,明确研究兴趣和目标。 2. 收集背景资料,使用学术搜索引擎和文献管理软件等 AI 工具。 3. 分析和总结信息,利用 AI 文本分析工具提取关键信息。 4. 生成大纲,使用 AI 写作助手规划课题结构。 5. 撰写文献综述,借助 AI 工具确保内容准确完整。 6. 构建方法论,根据研究需求采用 AI 建议的方法和技术。 7. 进行数据分析,运用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑,利用 AI 写作工具完成各部分内容,并检查语法和风格。 9. 生成参考文献,使用 AI 文献管理工具规范格式。 10. 审阅和修改,借助 AI 审阅工具检查逻辑性和一致性。 11. 提交前检查,使用 AI 抄袭检测工具确保原创性,并调整格式。 需要注意的是,在使用 AI 工具辅助学习和研究时,应保持批判性思维,不能完全依赖,要确保研究的质量和学术诚信。
2025-01-15
现在适合赋能学习的ai有哪些
以下是一些适合赋能学习的 AI: 在医疗保健领域,为了产生真正的改变,应创建像优秀医生和药物开发者那样学习的“专家”AI。通过堆叠模型,如先训练生物学、化学模型,再添加特定于医疗保健或药物设计的数据点,反映对每个基本元素的理解或预测能力。 对于英语学习: 利用智能辅助工具如 Grammarly 进行写作和语法纠错。 使用语音识别应用如 Call Annie 进行口语练习和发音纠正。 借助自适应学习平台如 Duolingo 获得量身定制的学习计划和内容。 运用智能对话机器人如 ChatGPT 进行会话练习和对话模拟。 对于数学学习: 使用自适应学习系统如 Khan Academy 获得个性化学习路径和练习题。 利用智能题库和作业辅助工具如 Photomath 获取问题解答和解题步骤。 借助虚拟教学助手如 Socratic 获得答疑服务和教学视频。 参与交互式学习平台如 Wolfram Alpha 的课程和实践项目进行数学建模和问题求解。 通过结合 AI 技术和传统学习方法,可以更高效、更个性化地进行学习,并取得更好的效果。但需注意内容可能由 AI 大模型生成,请仔细甄别。
2025-01-15
哪个ai做ppt比较好
以下是一些做 PPT 较好的 AI 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 百度文库:付费工具,质量较好。网址:https://wenku.baidu.com 6. Chatppt.com:付费,自动化程度高。 7. Tome.app:AI 配图效果好。 其中,在体验 gamma、AIPPT、islide AI 这三款产品后,gamma 被认为是最好用的,只要提供了内容框架,生成的 PPT/网页审美水平较高。
2025-01-15
如何使用AI
使用 AI 可以通过以下方式实现不同的任务: 在阿里巴巴营销技巧和产品页面优化方面: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:借助 AI 推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:使用 AI 设计工具生成吸引人的页面布局。 4. 内容生成:依靠 AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量产品图片。 6. 价格策略:利用 AI 分析不同价格点对销量的影响,制定有竞争力的策略。 7. 客户反馈分析:借助 AI 了解客户需求,优化产品和服务。 8. 个性化推荐:依靠 AI 提供个性化产品推荐,增加销售额。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:利用 AI 分析活动效果,了解哪些更能吸引顾客并产生销售。 11. 库存管理:借助 AI 预测需求,优化库存管理。 12. 支付和交易优化:通过 AI 分析支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:利用 AI 在社交媒体上找到目标客户群体,精准营销提高知名度。 14. 直播和视频营销:依靠 AI 分析观众行为,优化直播和视频内容。 安装灵码 AI 编程助手: 在配置 AI 插件之前,需要先安装 python 的运行环境。具体操作是点击左上角的 FileSettingsPluginsMarketplace。安装完成插件会提示登录,按要求注册登录即可。使用上和 Fitten 差不多。 利用 AI 写课题方面: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:借助 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并进行最后的格式调整。但需记住,AI 工具是辅助,不能替代研究者的专业判断和创造性思维,应保持批判性思维,确保研究质量和学术诚信。
2025-01-15
我是一个ai小白,来到这个网站,从哪里开始学起?
对于 AI 小白来说,可以按照以下步骤开启学习之旅: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-12
我是一个产品经理但没有编程基础,目标是可以做自己的AI产品,学习AI应该从哪里开始学起
作为没有编程基础的产品经理,学习 AI 可以从以下几个方面开始: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库有很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,了解 AI 提示词工程师的岗位技能要求也会对您有所帮助: 1. 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 3. 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 4. 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 5. 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 6. 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 7. 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 8. 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 9. 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 10. 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 11. 具有一定的编程基础,熟练使用 Python、Git 等工具。 需要注意的是,虽然您是产品经理,但如果要独立做完整的产品开发,不要寄希望于 0 基础没有额外输入光靠工具就能完成。在开发过程中,可能需要提前学习相关知识和技能。
2024-11-25
ai从哪里学起
对于新手学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的一系列课程,特别推荐李宏毅老师的课程。 利用在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。建议掌握提示词的技巧,其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品并制作自己的作品。知识库中有很多大家实践后的作品和文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,激发对 AI 潜力的认识。 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。学习 AI 是一个长期的过程,需要耐心和持续的努力,不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2024-10-10
我做过微商,主要是网上卖门票优惠劵,美食优惠卷,过节卖月饼种子礼盒,还有蟹卡,我平时时间比较富裕,请推荐我适合做那个行业的副业,我45岁,男士,适合利用哪款ai工具来帮助我的副业,我应该具体从什么开始学起,我是做能源石油开采行业的,请给我推荐几款副业,
您好,鉴于您的情况,以下是一些可能适合您的副业推荐: 1. 电商直播带货:您有销售经验,可以通过直播介绍和销售各类特色产品。 2. 在线咨询服务:利用您在能源石油开采行业的专业知识,为相关从业者提供咨询。 在 AI 工具方面,您可以考虑以下几种: 1. 智能客服工具:例如阿里云小蜜等,帮助您处理客户的常见问题,提高服务效率。 2. 数据分析工具:如百度统计、腾讯分析等,帮助您分析市场数据和客户需求。 对于学习,建议您从以下方面开始: 1. 了解 AI 工具的基本功能和操作方法。 2. 学习如何运用数据分析工具来挖掘潜在的市场需求和客户偏好。 希望以上建议对您有所帮助。
2024-09-16
我是零基础,请问从哪里学起
如果您是零基础想要学习 AI,以下是一些建议: AI 提示词工程师方向: 网上有很多基础课程可供选择,比如一些科普类教程。 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 推荐一些练手的 Prompt 工具和相关教程文档。 强化学习方向: 如果概率论和线性代数知识遗忘较多,可以学习相关课程,大约周末一天时间。 若对机器学习无基础,可先看吴恩达的课程,再以李宏毅的课程作为补充。只关注入门的话,看前几节讲完神经网络的部分,约 25 小时。 跟着《动手学深度学习 https://hrl.boyuai.com/》动手学习并写代码,入门看前五章,约 10 小时。 观看 B 站王树森的深度学习课程的前几节学习强化学习基础知识点,约 5 小时。 上手做项目时,可以看《动手学强化学习》,看到 DQN 部分,约十几小时。 Stable Diffusion 方向: 含每节课的知识图谱与必要资料内容,请根据对应课程章节点击下方标题进入: B 站首门系统的 AI 绘画入门教程:https://space.bilibili.com/1814756990 提示词宝典:BV12X4y1r7QB 模型新手包:BV1Us4y117Rg 汉化及扩展安装:BV1hz4y1a76M 学习资料链接:🔗:https://nenly.notion.site/017c3341c8b84a7ebb4c2cb16f36e28f 随堂练习素材下载:🔗夸克:https://pan.quark.cn/s/98b88f75cc5f
2024-09-04
搭建个人知识库
搭建个人知识库主要包括以下内容: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种来源加载文档,LangChain 提供 100 多种文档加载器,包括非结构化、结构化数据和代码等。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM 生成答案。 2. 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互容量有限,可使用 OpenAI 的 embedding API 解决方案。 embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。 3. 本地知识库进阶: 若要更灵活掌控,需额外软件 AnythingLLM,其包含 Open WebUI 能力,并支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离。 构建本地知识库包括创建工作空间、上传文档并嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 最后,“看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可联系或加入免费知识星球(备注 AGI 知识库)。
2025-01-15
作为一名小学班主任,我想将AI作为辅助班级管理的工具,我可以怎么做?需要学习哪些基础知识,如何创建AI工具呢?
作为一名小学班主任,若想将 AI 作为辅助班级管理的工具,您可以参考以下建议: 基础知识学习: 1. AI 背景知识:了解人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 3. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 4. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 5. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 6. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 创建 AI 工具: 1. 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 需要注意的是,AI 技术在不断发展,您需要持续学习和探索,以更好地将其应用于班级管理中。
2025-01-15
有什么知识
以下是关于 AI 相关的知识: 1. AI Agent 系列中的 Brain 模块: 知识类型:训练大模型本质是将知识压缩,模型依赖知识进行推理、规划和反思。 内置知识:分为常识知识(包括日常生活中的事实和逻辑规则)、专业知识(涉及特定领域的详细信息)、语言知识(包括语法规则、句型结构、语境含义和文化背景等)。 2. RAG: 原理:对大语言模型的作用如同开卷考试对学生,事实性知识与推理能力分离,存储在外部知识源,包括参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部向量数据库等)。 3. 机器学习必备技能 数学基础: 重要性:库和框架支持虽多,但要成为专业人士需了解代码背后逻辑,取消框架支持时,了解数学细节和编写复杂模式很重要。 应用:凭借算法背后的数学知识为数据集选择最佳算法;利用正则化器背后的数学知识解决模型过拟合或高方差问题;利用图论知识分析数据特征间复杂关系;利用优化器背后的数学知识设计适当的成本函数。 所需数学知识水平:取决于具体需求,底层研究需要深厚数学知识,单纯应用者可能掌握 prompt 基础框架即可。
2025-01-15
微信超级AI知识助手教学(下)
以下是关于微信超级 AI 知识助手教学(下)的相关信息: 时间:12 月 11 日 20:00 () 内容:个人助手的微信多模态接入教学 讲师:@张梦飞
2025-01-14
有哪些AI入门知识可以学习
以下是一些 AI 入门知识供您学习: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于不会代码的您,还可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 微软也提供了为期 12 周、共 24 课时的 AI 初学者入门课程,您将深入学习符号人工智能、神经网络、计算机视觉、自然语言处理等内容。在课程中您将学到实现人工智能的不同方法、神经网络和深度学习、处理图像和文本的神经架构等,同时也会了解到课程不包括的内容。译者:Miranda,课程原网址 https://microsoft.github.io/AIForBeginners/ 。如果想提升学习效果,可以亲身实践课程内容、做随堂小测试或根据课程内容开展实验。这套课程是由专家设计的人工智能综合指南,它非常适合初学者,覆盖了 TensorFlow、PyTorch 及人工智能伦理原则。
2025-01-14
我该如何了解AI相关的知识 通往AHI之路有手机端吗
以下是一些了解 AI 相关知识的途径: 1. 访问《通往 AGI 之路》知识库,其提供了全面系统的 AI 学习路径,涵盖从常见名词到应用等各方面知识。您可以通过访问。 2. 关注相关的社交媒体账号,如公众号“通往 AGI 之路”、等,获取 AI 消息和知识普及视频。 3. 学习 AE 软件,了解其功能及与 AI 结合运用的方式,比如在 B 站找丰富的入门课程自学,或从包图网下载工程文件学习。 4. 阅读相关的研究报告,如艾瑞的《2024 年移动端 AI 应用场景研究报告》。 另外,《通往 AGI 之路》知识库目前没有手机端。
2025-01-14
学习路径
以下是系统学习 LLM 开发以及 AI 技术的学习路径: LLM 开发学习路径: 1. 掌握深度学习和自然语言处理基础:包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理中的词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理:熟悉 Transformer 模型架构及自注意力机制原理,掌握 BERT 的预训练和微调方法,阅读相关论文如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调:进行大规模文本语料预处理,掌握 LLM 预训练框架如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移,参考 HuggingFace 课程、论文及开源仓库等资源。 4. LLM 模型优化和部署:掌握模型压缩、蒸馏、并行等优化技术,进行模型评估和可解释性研究,实现模型服务化、在线推理、多语言支持等,运用相关开源工具如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习:结合行业场景进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态:关注顶会最新论文、技术博客等资源。 AI 技术学习路径: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 此外,在开始学习 AI 时,还需根据电脑的硬件情况和自身财力选择合适的方式,如本地部署、在线平台或配台电脑。必学、必看内容是基础课,主要解决环境问题和软件安装问题;建炉针对不同炼丹方式提供不同炼丹工具的安装教程;正式内容部分分为数据集预处理、模型训练以及模型调试及优化三个部分。
2025-01-15
1.1 AGI学习路径
以下是关于 AGI 学习路径的相关内容: YoYo 在通往 AGI 的学习之路上有以下心得: 学习前状态:不理解 AI 和提示词工程,作为文科生不懂代码且英语差,在学习前注册尝试各种 AI 工具走了不少弯路,对 ChatGPT 的认识仅限于日常问答和 SQL 学习交互,能支持工作数据提取。 学习后现状:可以搓多 Agent 的智能体,但需要进修 Python 搓更多智能体;进行了营销文案 demo、SQL 代码进阶学习应用;创建了 3 个图像流智能体和 2 个 Agent 智能体玩具;在公司中实践了智能客服从创建到应用的过程,实现企业微信机器人问答的基本功能;进行了学习 Dr.kown 的尝试实践和图像流的尝试以及企业智能体实践。 在 AGI 的学习路径方面,关键词包括:少就是多、先有个初识、目录索引推荐、兴趣最重要、先动手。学习路径如同游戏通关,有主线和支线。个人感受是学不完,找到适合自己的就好,学以致用,通过学习分享不断填补知识的缝隙来成长。 此外,“通往 AGI 之路”是一个致力于人工智能学习的中文知识库和社区平台,为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面。由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等,还定期组织活动。其品牌 VI 融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性。
2025-01-15
coze 搭建学习
以下是关于 Coze 搭建学习的相关内容: 5 月 7 号():大聪明分享,主题为“Agent 的前世今生”,每个分享人分享最初接触 Coze 的经历以及现在用 Coze 做什么。20:00 由 @🌈AJ 主持开场,20:00 21:00 大聪明分享,21:00 21:30 关于 Coze 随便聊聊。 5 月 8 号():大圣分享,主题为“我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze”,20:00 21:20 大圣分享。 5 月 9 号():艾木分享,主题为“Agent 系统的核心构成:Workflow 和 Multiagent Flow(以‘Dr.Know’和‘卧底’为例)”,20:00 21:00 艾木分享,21:00 21:30 线上答疑。 5 月 10 号():罗文分享,主题为“一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书”,20:00 21:00 罗文分享。 5 月 11 号():Itao 分享,主题为“和 AI 成为搭子”,20:00 21:00 Itao 分享,21:00 21:30 线上答疑。 此外,还有用 Coze 学习 RAG 的方法: 推荐使用 Claude + Coze 的方法学习新知识。Claude 是目前最强的 AI 大模型,一个月 20 美元,好用到飞起。Coze 是一款 AI Agent 的衍生产品,最大价值在于依靠它跟进当前 AI Agent 工具的发展情况,发现商业化机会,以及做产品 Demo。 在学习 RAG 的过程中,首先通过 Claude 了解细节概念,然后通过 Coze 搭建 Demo 动手实践。 学习 RAG 过程中创建了 4 个 Bot: 产品资料问答机器人,利用了 Coze 的知识库能力,演示知识库在企业中的应用。相关资料参考公开分享: Query 改写助手学习 Bot,专门做了一个 Bot 机器人进行学习。Bot 地址:https://www.coze.cn/store/bot/7400077517299957800?panel=1&bid=6dkpl06gg601j
2025-01-15