Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

使用AI过程中如何确保信息的保密性?

Answer

在使用 AI 过程中,确保信息保密性可以从以下几个方面入手:

  1. 数据处理环节:将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,针对每个环节优化 AI 性能,同时便于发现和修正问题。
  2. 提问方式:对于复杂问题,采用逐步深化和细化的方式提问。先提出宽泛问题,再根据回答进一步细化或深化。
  3. 提供学习内容:为 AI 系统提供大量高质量的数据和示例,包括详细的操作指南、行业最佳实践、案例研究等,同时编写详细的流程和知识(knowhow)。
  4. 利用专业术语引导:在 Prompt 中使用专业领域术语,如法律术语,引导 AI 回答方向,使其更精准地提供所需信息。
  5. 验证与反馈:大模型的语料存在滞后性,使用 AI 回答后要进行交叉验证,确保信息准确性。同时结合自身专业知识进行引导,筛选和判断回答是否符合相关要求。
  6. 数据隐私保护:
    • 应通过内置保护措施防止滥用数据,用户对自身数据的使用有决定权。
    • 设计选择应确保默认包含隐私保护,包括确保数据收集符合合理预期,只收集特定情境下严格必要的数据。
    • 系统开发者应寻求用户许可并尊重其关于数据收集、使用、访问、转移和删除的决策,无法做到时应采用替代的隐私保护措施。
    • 同意应仅在能适当和有意义给予的情况下用于证明数据收集的合理性,同意请求应简洁、易懂,并赋予用户对数据收集和使用情境的决定权。
    • 对敏感领域(如健康、工作、教育、刑事司法和金融)的数据和推断应加强保护和限制,对青少年相关数据应优先保护。
    • 应避免不受检查的监视,监视技术应受到加强监督,包括对其潜在危害的预部署评估和范围限制,以保护隐私和公民自由。
  7. 政府监管:
    • 要求最强大的 AI 系统开发者向美国政府分享安全测试结果和其他关键信息。
    • 制定标准、工具和测试,以确保 AI 系统安全、可靠和值得信赖。
    • 为防止利用 AI 制造危险生物材料,制定新的生物合成筛选标准。
    • 建立检测 AI 生成内容和验证官方内容的标准和最佳实践,以保护美国人免受 AI 导致的欺诈和欺骗。
Content generated by AI large model, please carefully verify (powered by aily)

References

潘帅:手把手分享法律人如何用好AI — Prompt篇

例如,如果你正在使用AI进行数据分析,你可能需要将数据清洗、数据提取、模型选择、模型训练和结果解释等环节分开处理。这样做的好处是,你可以针对每个环节优化AI的性能,同时也便于发现和修正问题。还有一种是针对复杂的问题,律师可以采用逐步深化和细化的方式提问。先提出一个较为宽泛的问题,然后根据AI的回答进一步细化或深化问题。这种方法有助于律师逐步深入了解问题的各个方面。例如,在处理一起知识产权侵权案件时,律师可以先问:“这起案件中,被告是否构成侵权?”然后根据AI的回答进一步提问:“如果构成侵权,那么侵权的类型和程度是怎样?”给AI参考和学习的内容让他理解结构和学习,写出流程,写出knowhowAI系统通常需要大量的数据和示例来学习和理解任务的结构。提供高质量的参考材料和学习内容是提高AI性能的关键。这可能包括详细的操作指南、行业最佳实践、案例研究等。同时,编写详细的流程和知识(knowhow)也很重要,这不仅能帮助AI更好地理解任务,也能为人类用户提供指导。例如,在自动化文档处理中,你可以编写一个详细的指南,说明如何处理不同类型的文档,以及如何使用AI工具来提高效率。利用专业领域的术语引导在Prompt中使用法律术语来引导AI的回答方向。比如,在处理合同纠纷时,律师可以提示:“从合同签订条件、排他性合作和违约责任三个方面分析该合同的履行情况。”这样的引导有助于AI更精准地提供所需信息。验证与反馈大模型的语料存在一定滞后性,在使用AI的回答后,律师一定要对内容进行交叉验证,确保信息的准确性。同时,律师在使用AI时,还应结合自身的专业知识进行引导。通过专业知识对AI的回答进行筛选和判断,确保其符合我国法律伦理、立法目的和实务。

《人工智能权利法案蓝图》

You should be protected from abusive data practices via built-in protections and you should have agency over how data about you is used.You should be protected from violations of privacy through design choices that ensure such protections are included by default,including ensuring that data collection conforms to reasonable expectations and that only data strictly necessary for the specific context is collected.Designers,developers,and deployers of automated systems should seek your permission and respect your decisions regarding collection,use,access,transfer,and deletion of your data in appropriate ways and to the greatest extent possible;where not possible,alternative privacy by design safeguards should be used.Systems should not employ user experience and design decisions that obfuscate user choice or burden users with defaults that are privacy invasive.Consent should only be used to justify collection of data in cases where it can be appropriately and meaningfully given.Any consent requests should be brief,be understandable in plain language,and give you agency over data collection and the specific context of use;current hard-to-understand notice-and-choice practices for broad uses of data should be changed.Enhanced protections and restrictions for data and inferences related to sensitive domains,including health,work,education,criminal justice,and finance,and for data pertaining to youth should put you first.In sensitive domains,your data and related inferences should only be used for necessary functions,and you should be protected by ethical review and use prohibitions.You and your communities should be free from unchecked surveillance;surveillance technologies should be subject to heightened oversight that includes at least pre-deployment assessment of their potential harms and scope limits to protect privacy and civil liberties.Continuous surveillance and monitoring should not be used in education,work,housing,or in other contexts where the use of such surveillance technologies is likely to limit rights,opportunities,or access.Whenever possible,you should have access to reporting that confirms your data decisions have been respected and provides an assessment of the potential impact of surveillance technologies on

拜登签署的AI行政命令_2023.10.30

Require that developers of the most powerful AI systems share their safety test results and other critical information with the U.S.government.In accordance with the Defense Production Act,the Order will require that companies developing any foundation model that poses a serious risk to national security,national economic security,or national public health and safety must notify the federal government when training the model,and must share the results of all red-team safety tests.These measures will ensure AI systems are safe,secure,and trustworthy before companies make them public.Develop standards,tools,and tests to help ensure that AI systems are safe,secure,and trustworthy.The National Institute of Standards and Technology will set the rigorous standards for extensive red-team testing to ensure safety before public release.The Department of Homeland Security will apply those standards to critical infrastructure sectors and establish the AI Safety and Security Board.The Departments of Energy and Homeland Security will also address AI systems’threats to critical infrastructure,as well as chemical,biological,radiological,nuclear,and cybersecurity risks.Together,these are the most significant actions ever taken by any government to advance the field of AI safety.Protect against the risks of using AI to engineer dangerous biological materials by developing strong new standards for biological synthesis screening.Agencies that fund life-science projects will establish these standards as a condition of federal funding,creating powerful incentives to ensure appropriate screening and manage risks potentially made worse by AI.Protect Americans from AI-enabled fraud and deception by establishing standards and best practices for detecting AI-generated content and authenticating official content.The Department of Commerce will develop guidance for content authentication and watermarking to clearly label AI-generated content.Federal agencies will use these tools to make it easy for Americans to know that the communications they receive from their government are authentic—and set an example for the private sector and governments around the world.

Others are asking
通过ai能赚什么钱
通过 AI 赚钱的方式有很多种,以下为您详细介绍: 1. 应用开发:比如开发 Agent 应用,对外提供接口。熟悉业务并结合 AI 能力打磨产品,形成护城河。 2. 知识输出:包括 Key 商、写书、卖课等。 3. 承接项目:为有需求的客户提供相关服务。 4. 搭建镜像站。 5. 在 AI 相关岗位工作:如成为数据科学家、机器学习工程师等,获得高薪收入。 6. 利用 MCP 变现: 开发者可以构建全新的商业服务。 普通人能够借助 AI 完成复杂工作并获得收益。 企业可以构建 AI 工具矩阵,替代传统 SaaS 服务。 参与 MCP 生态中的各个环节,如作为内容创作者、工具开发者提供付费内容、数据订阅;作为开发者、系统集成者开发连接器,按调用计费或售卖;作为平台方、模型方按 token 收费;作为产品方、私域运营者收订阅费、卖课程、做服务;作为创业者、聚合平台通过抽成或广告分成。 需要注意的是,虽然学了 AI 有可能赚钱,但不一定保证每个人都能赚到钱。是否能赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。
2025-04-08
写标书的 ai
以下是关于写标书的 AI 的相关信息: 胡凯翔的经验:用 prompt 写标书可分为提取提纲、拆解指南、prompt 成稿三大类。提取提纲要根据招标文件评分标准列出初步提纲,目前人工提取,有 prompt 化可能。拆解指南是将项目背景、工作内容等拆解归纳到 x—mind 中,为 GPT 提供足够上下文语境。prompt 成稿采取简提示详资料的方式与 GPT 对话,遵循先提纲后文章、逐节逐章输出的方式,先提纲后文章分为让 GPT 生成提纲、为提纲写摘要、根据内容逐节输出文章。 AutogenAI:伦敦初创公司开发的基于生成型人工智能的工具,可帮助企业撰写更强的提案,提高中标率。该公司获 Blossom Capital 2230 万美元投资,用于招聘、扩展平台和增加客户群。能将撰写强大提案的过程加快 800%,同时降低 10%的采购成本。
2025-04-08
如何使用AI给测试进行提效
以下是关于如何使用 AI 给测试提效的详细内容: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08
投标书编写的免费AI工具
以下是一些与投标书编写相关的免费 AI 工具: 1. AutogenAI:伦敦初创公司开发的基于生成型人工智能的工具,可帮助企业撰写更强的提案,提高中标率。自成立不到一年已获 28 个客户,能将撰写强大提案的过程加快 800%,同时降低 10%的采购成本。网址:https://autogenai.com 。 此外,还有一些用于 AIGC 相关检测的网站: 1. :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。使用方法为将文本粘贴到在线工具中点击检测按钮获取分析结果。 2. GPTZero:专门用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。使用时上传文档或输入文本,系统会分析并提供报告显示是否由 GPT3 生成。 3. Content at Scale:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。使用时将文本粘贴到在线检测工具中获取分析结果。
2025-04-08
我已经有了论文大纲,需要生成技术路线图,哪个AI可以实现
以下是一些可以帮助您生成技术路线图的 AI 工具和方法: 1. 利用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 2. 使用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 3. 对于生成“延伸思考”的问题,可以让 AI 根据特定的参照(比如之前的产出或是新增的参考文案)输出具备更高关联度的内容。 4. 可以用同一段提示词对比不同模型的输出,择优深挖。 5. 在满意的内容节点上添加“文本编辑器显示”,对文本进行精加工。 6. 先确定整个调研报告的大纲目录,例如通过手机识别示例报告的目录截图。 7. 让 AI 总结语言风格,如将范文交给 Claude 2 总结语言风格。 8. 让 GPT4 按照目录逐步生成章节内容,设置循环结构,根据情况决定是否调用 webpolit 插件查询相关信息。 9. 在需要搜索网络信息的章节处打上标签,让 GPT4 自主搜索信息再来生成内容。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行相关工作时,应保持批判性思维,并确保成果的质量和学术诚信。
2025-04-08
体验最好用的AI+脑图软件是哪个?请按好评度推荐前3个。
目前在 AI 和脑图结合的软件领域,好评度较高的前 3 个软件可能因用户需求和使用场景的不同而有所差异。但常见的有: 1. MindManager:功能强大,界面友好,支持多种格式的导入和导出。 2. XMind:操作简单,模板丰富,具有良好的兼容性。 3. FreeMind:开源免费,适合个人和小型团队使用。 需要注意的是,对于哪款软件最好用,还需根据您的具体需求和使用习惯来决定。
2025-04-08
给我5个midjourney确保场景一致性的Sample提示词
以下是 5 个 Midjourney 确保场景一致性的 Sample 提示词: 1. Scifi movie scene. In the silverwhite space environment, from the overtheshoulder lens on the right side of the man with short hair and navy blue jumpsuit, a transparent virtual screen appeared on the wall in front of him. Behind there is the silhouette of another female employee with long blue hair, operating another screen. Rendered in a C4D style inspired by Unreal Engine, with high resolution and rich detail. sref url cref url ar 16:9 style raw sw 30 cw 100 2. In a magical forest, a fairy with colorful wings is sitting on a huge mushroom. The sunlight filters through the leaves, creating dappled patterns on the ground. cref https://my.image.host/fairy.jpg s 800 3. On a sandy beach at sunset, a couple is walking hand in hand, leaving footprints in the sand. The ocean waves crash gently in the background. cref https://my.image.host/couple.jpg ar 9:16 4. In a medieval castle courtyard, a knight in shining armor is training with a sword. The flags are fluttering in the wind. cref https://my.image.host/knight.jpg s 700 5. At a busy city street corner, a street musician is playing a guitar, surrounded by a crowd of people. The buildings are towering in the background. cref https://my.image.host/musician.jpg ar 4:3
2025-02-14
如何确保agent按要求调用插件
要确保 Agent 按要求调用插件,可以参考以下方法: 1. 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。 2. 一般而言,对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,鉴于 LLM 只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 3. 在插件中心确定需要的插件时,先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。 例如,在搜索 TTS 文字转语音插件时,可以使用“语音”“文字转语音”“TTS”等相关关键词;在搜索思维导图插件时,可以使用“脑图”“树图”“导图”“mindmap”等关键词。
2024-12-17
如何利用自动对齐技术,确保16位不同地点的人员录制的同一句口号音频同步且整齐,请推荐具有此功能的音频编辑工具、网站或AI工具,以便将这16段音频精确叠加并融合成一个协调一致的整体
以下是关于利用自动对齐技术确保 16 位不同地点人员录制的同一句口号音频同步且整齐的相关信息及工具推荐: 在音频编辑中,常见的步骤如下: 1. 选择合适的数字音频工作站(DAW),如 Studio One。上传 FLAC 无损格式的音频,只对融合部分进行 Inpaint 处理,保持其他音频信息不变,以避免音质问题。 2. 在 DAW 中对接音轨后,播放试听,并缩放波形图,检查波形是否正确对齐。若出现波形未对齐或播放时有咔哒声等问题,可能是在导出和处理过程中对音频施加了额外的效果器处理,如混响、限制器、压缩等,导致音频前后不一致,影响对接效果。因此,需要确保在不同的导出和处理步骤中,音频不受到额外的处理,或者在每次处理时保持相同的效果设置。 具有此功能的音频编辑工具和网站包括: 1. Studio One:可用于对齐拼接音轨,并进行后续的叠加额外音轨、调整音量和平衡等操作,以丰富音频的层次,注意叠加后各音轨的电平,避免过载或失衡。 2. Udio:具有混音功能,可对现有剪辑进行微妙或明显的变化。在提示框中有新的区域,通过滑块控制混音效果的强度。 此外,阿里的相关研究全面概述了大语言模型自动对齐的主要技术路径,将现有的自动对齐方法分为四大类:利用模型固有偏好实现对齐、通过模仿其他模型行为实现对齐、利用其他模型反馈实现对齐、通过环境交互获得对齐信号,并探讨了自动对齐背后的机理以及实现有效自动对齐的关键因素。但此研究主要针对大语言模型,对于音频对齐的直接应用可能有限。
2024-10-17
我要修改一个论文文档,要修改的地方已经在文档中标出,我要用哪些AI工具能够快速帮我高效修改论文并确保内容准确。
以下是一些能够帮助您快速高效修改论文并确保内容准确的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,丰富的模板库和协作功能简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 此外,还有一些中文的内容仿写 AI 工具,如: 1. 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,擅长多种文体写作,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 由腾讯 AI Lab 开发,提升写作者写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 但请注意内容由 AI 大模型生成,请仔细甄别。
2024-09-23
我要修改一个论文文档,要修改的地方已经在文档中标出,我要用哪些AI工具能够快速帮我高效修改论文并确保内容准确。
以下是一些能够帮助您快速高效修改论文并确保内容准确的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 此外,还有一些中文的内容仿写 AI 工具,如: 1. 秘塔写作猫:https://xiezuocat.com/ 。它是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 。是智能写作助手,能写心得体会、公文、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 。由腾讯 AI Lab 开发,能提升写作效率和创作体验。 更多 AI 写作类工具可以查看这里:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-09-23
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici🦾在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
扣子设置了微信客服机器人,如何实现机器人按时自动向微信群发布图片或文档等信息。
要实现微信客服机器人按时自动向微信群发布图片或文档等信息,您可以按照以下步骤进行操作: 前提条件: 1. 已开通了。 2. 已搭建了 Bot。 步骤一:获取微信客服配置信息 1. 登录平台。 2. 单击企业信息,然后复制企业 ID。 3. 单击开发配置,然后再单击开始使用。 4. 单击随机获取按钮分别生成并保存 Token 和 EncodingAESKey。复制 Token 和 EncodingAESKey 后,先不要关闭该页面。 步骤二:在扣子中配置微信客服信息 1. 在 Bots 页面,选择需要发布的 Bot。 2. 在 Bot 编排页面,单击发布。 3. 找到微信客服渠道,然后单击配置。 4. 输入步骤一中复制的企业 ID,然后单击下一步。 5. 输入步骤一中复制的 Token 和 EncodingAESKey,然后单击下一步。 6. 复制 webhook 地址。复制 webhook 地址后,先不要关闭该配置窗口。 步骤三:配置回调地址 1. 回到步骤一中的开始企业接入页面,输入上一步中复制的 webhook 地址。单击完成。确保粘贴回调地址时没有引入空格,空格会导致校验失败。 2. 在开发配置页面,复制 secret。 3. 单击客服账号,复制账号。 步骤四:发布 Bot 1. 回到扣子平台的微信客服渠道配置页面,输入复制的 secret 和客服名称。 2. 单击保存。 3. 在发布记录中输入发布信息,然后勾选微信客服渠道,再单击发布。 4. 发布完成后,单击立即对话登录微信客服,体验 Bot 效果。 常见问题: 1. 收不到机器人回复消息怎么办? 可尝试通过以下方法解决: 查看微信客服的启用状态:登录,在应用管理页面,点击微信客服。确保没有启用微信客服功能。如果已经开启了微信客服功能,需要关闭。关闭后,该应用在工作台入口将被隐藏,员工不可使用。请谨慎评估。 检查近期是否有登录企业微信应用。确保企业至少有一个成员通过手机号验证/微信授权登录过企业微信应用。 如果还是有问题,可以发送邮件至 feedback@coze.cn 反馈。
2025-03-30
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
推荐一些优质AI信息源,X上的
以下是为您推荐的一些优质 AI 信息源: 1. 在,Grok 能通过 X 平台实时了解世界,还能回答多数其他 AI 系统拒绝的棘手问题,独具幽默回答模式,可避免恶意提问,留下邮件可申请早期测试。 2. 「AI 研究报告》中文版,这是对 2022 年 10 月2023 年 10 月 AI 现状及进展最为全面的报告。 3. 即刻 App 的“”等免费圈子,这里有前沿信息线索,很多 Twitter 上的开发者大牛也会在此分享。 此外,AI 知识库的信息来源还有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。对于初学者入门,推荐看 Open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。还有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,以及软件 2.0 时代相关内容。
2025-03-28
图片信息提取
图片信息提取主要包括以下几个方面: 1. 实现工作流: 上传输入图片。 理解图片信息,提取图片中的文本内容信息。 场景提示词优化/图像风格化处理。 返回文本/图像结果。 零代码版本:选择 Coze 平台,将本地图片转换为在线 OSS 存储的 URL 以便调用,封装图片理解大模型和图片 OCR 为工作流插件。 2. 银海的工程视角 TrickleOnWeChat 方案: 设计信息整合和提炼的 Prompt 提示词,将 OCR 文本信息与图片识别信息关联整合,按信息分类分析方法整理并按指定格式输出,增加标签分类。 3. 星流一站式 AI 设计工具: 左侧图片案例板块包含大量图像例图与生图信息,滑动鼠标到“info”区域可直接将图像发送到画布与生图信息调取。 图像筛选功能包括推荐(根据生图参数推荐)、热门(推荐浏览量最高的图片)、搜索(输入描述进行图像搜索)。 图像调取包括点击“发送到画布”直接将图像发送到“无限画布”,生图参数调取包括整体调取(点击“发送到生成器”调取全部参数)和单个调取(点击右侧单独的发动键调取单个参数)。
2025-03-24
我需要在一个软件上实现自动化抢单流程,并在抢单成功后自动在软件中添加备注信息。要求是点击频率不能太高。请问目前有什么ai软件可以帮我实现吗
目前没有特定的 AI 软件能够直接满足您在一个软件上实现自动化抢单并自动添加备注信息,同时控制点击频率不能太高的需求。通常这类需求可能需要通过编程和定制化开发来实现,利用相关的编程语言和工具,根据具体软件的接口和规则进行开发。
2025-03-24