Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我已经有了论文大纲,需要生成技术路线图,哪个AI可以实现

Answer

以下是一些可以帮助您生成技术路线图的 AI 工具和方法:

  1. 利用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。
  2. 使用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。
  3. 对于生成“延伸思考”的问题,可以让 AI 根据特定的参照(比如之前的产出或是新增的参考文案)输出具备更高关联度的内容。
  4. 可以用同一段提示词对比不同模型的输出,择优深挖。
  5. 在满意的内容节点上添加“文本编辑器显示”,对文本进行精加工。
  6. 先确定整个调研报告的大纲目录,例如通过手机识别示例报告的目录截图。
  7. 让 AI 总结语言风格,如将范文交给 Claude 2 总结语言风格。
  8. 让 GPT-4 按照目录逐步生成章节内容,设置循环结构,根据情况决定是否调用 webpolit 插件查询相关信息。
  9. 在需要搜索网络信息的章节处打上标签,让 GPT-4 自主搜索信息再来生成内容。

需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行相关工作时,应保持批判性思维,并确保成果的质量和学术诚信。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何利用AI写课题

利用AI技术来辅助写作课题可以提高效率并激发新的创意。以下是一些步骤和建议:1.确定课题主题:明确你的研究兴趣和目标,选择一个具有研究价值和创新性的主题。2.收集背景资料:使用AI工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。3.分析和总结信息:利用AI文本分析工具来分析收集到的资料,提取关键信息和主要观点。4.生成大纲:使用AI写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。5.撰写文献综述:利用AI工具来帮助撰写文献综述部分,确保内容的准确性和完整性。6.构建方法论:根据研究需求,利用AI建议的方法和技术来设计研究方法。7.数据分析:如果课题涉及数据收集和分析,可以使用AI数据分析工具来处理和解释数据。8.撰写和编辑:利用AI写作工具来撰写课题的各个部分,并进行语法和风格的检查。9.生成参考文献:使用AI文献管理工具来生成正确的参考文献格式。10.审阅和修改:利用AI审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。11.提交前的检查:最后,使用AI抄袭检测工具来确保课题的原创性,并进行最后的格式调整。请记住,AI工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用AI进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。内容由AI大模型生成,请仔细甄别。

flowith 指南|画布是 AI 的旷野啊

由于我之前已经做过两期内容,它们都被用作AI学习语气语调的参考文稿,接下来就是在每条任务线下针对生成的内容进行微调。过程中,我用了一个叫「引用节点」的技巧,也就是让AI根据特定的参照(比如之前的产出或是新增的参考文案)输出具备更高关联度的内容。比如在生成「延伸思考」的问题时,需要严格参照未来世界观和各个驱动力的解析,所以我在提示词中引用了这两块内容,另外我还新增了一个自由节点复制了一篇不错的影评,将其纳入引用以拓展AI的思考维度。这里再补充两个有趣的功能,第一个是你可以用同一段提示词对比不同模型的输出,择优深挖(像DS提出的中文问题就比GPT好很多)。这对文生图尤为友好,不同模型的画风各具特色,这次的底图就采用了Ideogram的生成结果。第二个有趣的功能是,在满意的内容节点上添加「文本编辑器显示」,该节点的文本就会被添加到项目首页的编辑器(Composers)中,在那里你可以对文本进行精加工,直到符合你的输出标准。由于我最后会用Figma排版,所以这里只是把要用的文本摘出来,没做过多处理。如此一来,三个支线任务加上底图生成便顺利完成。对于剩下的未来思维导图,考虑到AI还不能很好地直接生成文字和图形结合的diagram,我决定用它生成一些辅助大纲。类似的,我添加了两个自由节点上传前两期的思维导图作为参照,并引用了未来世界观和驱动力作为背景知识。这是AI生成的结果,超出预期,不无帮助。我也试过让AI根据大纲生成导图,但结果不太理想。

卓sir:2小时帮同学干完了3篇调研报告

先确定整个调研报告的大纲目录。这个因为我们老师发了示例报告,所以我直接把目录截图下来用手机识别。搞定。然后就是确定整体的语言风格和特色。因为调研报告一般和论文差不多,所以语言风格一般是“逻辑清晰,层层递进,条理分明”,为了语言风格更接近范文,我还把范文直接丢给Claude 2,让它总结出语言风格。在这里,我之前还走过弯路,就是让Claude 2分析每一个具体的章节的结构安排和语言风格,恨不得直接看起来像示例范文,后来的输出结果证明是我强迫症又犯了,许多输出的内容根本不按我的来,删掉了反而效果更好。所以,生成文章,还是不要过于限制GPT-4,否则就太难为AI了。最后就是让GPT-4按照目录逐步生成章节内容。这个倒不难,直接在workflow当中设置一个循环结构,在它生成一段章节内容后,我同意后再进行下一章节的内容,否则重新生成。这里还有一个小细节,就是在生成内容之前,需要GPT-4判断某章节是否要调用webpolit插件,查询相关信息后,再来撰写报告章节部分。这个部分最难,导致我半天就可以搞定一条提示词,硬是让我迭代了1天半,就这,还差点让我抑郁想打住不干了。好在我去了星球和群聊求助,群里的大佬也给力,都给了我建议,这也让我有了一些思路。结合之前在即刻上看到的优秀提示词,我想:能不能在需要搜索网络信息的章节处打上标签,然后GPT-4看到标签后就会自主搜索信息再来生成内容,没打上标签的就直接输出?一试,还真行。prompt其他部分按顺序写完即可。经过以上一番操作后,终于写完了完成调研报告的prompt。

Others are asking
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
ChatGPT 各项技术能力路线图
以下是关于 ChatGPT 技术能力路线图的相关内容: 阶段一:开卷有益阶段 理解人类语言,学习语义关系、语法规律,能够应对未见过的语言处理情况。 GPT3 习得各种词汇和语法规则、编程语言及不同语言之间的关系,但存在回答不受约束的问题,指挥很重要。 阶段二:模版规范阶段 对话模版矫正模型,可形成优质对话并实现延展能力,知道什么该说和不该说。 通过任务对话范文训练,实现理解指令要求和例子要求的能力。 同时,在 AGI 实现路径与技术预测方面: 主要技术路线与理论框架包括可能性,如硬件与计算架构的趋势(量子计算、神经形态芯片、云计算资源扩展等),软件与算法进展(深度学习、元学习、强化学习、神经符号混合、AutoML、AutoGPT 等),以及人工智能安全与对齐研究(对齐难题、可解释性等)。 实现 AGI 所需的里程碑与风险点包括可能的时间表(如 2030、2040、2050 关键技术预测)和潜在的“奇点”时刻与触发条件(硬件爆发、算法重大突破、意外的研究范式转折等)。 此外,AI 的发展历程: 从 1950 年提出,近 20 年在国内互联网发展下普及。 最初应用是基于 NLP 技术的聊天机器人和客服机器人。 随后中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中广泛应用。 以前技术突破多限于特定领域,模型应用范围狭窄。 随着 OpenAI ChatGPT 等大型语言模型的突破,展示了新的发展路线,通过大规模模型预训练,涌现出广泛的智能应用。 这种集多功能于一体的模型为 AI 未来发展提供新方向,也带来新焦虑,但“人机共生”几乎是人类发展的必然。
2025-02-27
小模型场景落地路线图
实施小模型(如轻量级机器学习模型或嵌入式AI模型)的场景落地需要精细的规划和执行。以下是一个详细的路线图,涵盖从概念到部署的各个阶段。 路线图 1. 需求分析 目标定义: 明确项目的目标和期望结果,确定需要解决的问题和应用场景。 可行性研究: 评估技术可行性、市场需求和成本效益。 需求收集: 收集和分析来自利益相关者的需求,明确模型功能和性能指标。 2. 数据准备 数据收集: 收集相关数据,这可以来自数据库、传感器、API等。 数据清洗: 处理缺失值、异常值和重复数据。 数据标注: 对数据进行分类和标注,以便用于监督学习模型。 数据分割: 将数据分为训练集、验证集和测试集。 3. 模型选择 模型探索: 调研和选择适合项目需求的小模型,如TinyML模型、MobileNet、SqueezeNet等。 预训练模型: 考虑使用预训练模型进行微调,以节省时间和计算资源。 4. 模型训练 训练环境搭建: 配置所需的硬件和软件环境(如TensorFlow Lite、PyTorch Mobile)。 模型训练: 在训练集上训练模型,并使用验证集进行调优。 超参数调优: 通过网格搜索或贝叶斯优化等方法优化模型超参数。 5. 模型优化 模型压缩: 采用剪枝、量化等技术减少模型大小和计算量。 模型精简: 删除不必要的特征和层,进一步简化模型结构。 模型加速: 使用硬件加速(如TPU、GPU)优化模型推理速度。 6. 部署准备 平台选择: 确定模型的部署平台(如移动设备、嵌入式系统、边缘设备)。 代码整合: 将模型集成到应用程序或设备固件中。 性能测试: 在目标环境中测试模型的性能,包括速度、内存占用和功耗等。 7. 模型部署 部署环境搭建: 搭建生产环境,确保与开发环境一致。 持续集成: 设置CI/CD管道,确保模型的持续集成和部署。 安全措施: 实施必要的安全措施,保护模型和数据的隐私与安全。 8. 监控与维护 监控系统: 部署监控系统,实时跟踪模型的性能和使用情况。 模型更新: 定期更新和重新训练模型,以应对数据分布变化和新需求。 用户反馈: 收集用户反馈,优化模型和应用程序。 9. 文档与培训 文档编写: 编写详细的技术文档和用户手册。 培训支持: 为使用和维护模型的人员提供培训和支持。 工具和技术 数据处理: Pandas, NumPy, OpenCV 模型训练: TensorFlow, PyTorch, scikitlearn 模型优化: TensorFlow Lite, ONNX, TensorRT 部署平台: Docker, Kubernetes, AWS Lambda, GCP Functions 监控工具: Prometheus, Grafana, ELK Stack 实例项目 智能家居设备中的语音识别 需求分析: 在智能家居设备中实现语音命令识别。 数据准备: 收集和标注家居环境中的语音命令数据。 模型选择: 使用MobileNet模型进行语音识别。 模型训练: 在收集的语音数据上训练模型,并进行超参数调优。 模型优化: 使用量化技术将模型大小减小到适合嵌入式设备。 部署准备: 将模型集成到智能家居设备的固件中。 模型部署: 在生产环境中部署,并进行性能测试和优化。 监控与维护: 实时监控语音识别的性能,收集用户反馈进行改进。 通过上述路线图,开发团队可以系统地实现小模型在不同场景下的落地,从而确保模型的高效性和实用性。
2024-06-17
有论文大纲怎么ai生成一篇完整的论文且文献要真实
利用 AI 生成一篇完整且文献真实的论文,您可以参考以下步骤和建议: 1. 确定课题主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎(如 Semantic Scholar)和文献管理软件(如 Zotero)来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具(如 Quillbot)来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具(如 Google Colab、Knitro)来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具(如 Grammarly)来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具(如 Turnitin、Crossref Similarity Check)来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。 在论文写作领域,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 使用这些工具时,重要的是要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-04-13
如何要求AI写一个论文初稿大纲
以下是要求 AI 写一个论文初稿大纲的方法: 1. 确定论文主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-04-12
我怎么让ai帮我写论文,在我有完整的数据内容和大纲的情况下
以下是在您有完整的数据内容和大纲的情况下,让 AI 帮您写论文的步骤和建议: 1. 确定论文主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果论文涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。 另外,还有一些相关的经验分享: 对于写作与内容创作,先确定一个明确的大主题,再细化出一系列小主题,形成文章大纲,在大纲要点下添加关键词提示。对着文章大纲,挨个语音输出。然后用 AI 组合成完整的文章,在 AI 合并出来的文章里插入一些配图,再稍微修改调整。 对于丰富细化,要让 AI 一段一段进行细节描写。为确保文章前后一致,可先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。可以让 AI 以表格的形式输出细节描述,这样有打破 AI 叙事习惯、便于局部调整、确保内容具体等好处。 对于串联成文,把生成的表格依次复制粘贴,让 AI 照着写文章。 但也要注意,在修改过程中可能会遇到一些问题,比如某些 AI 模型可能会出现“失忆”等情况,导致修改不符合预期。
2025-04-09
我需要ai帮助我根据我的大纲生成一篇标准的论文
以下是为您根据大纲生成标准论文的一些建议和参考: 首先,确定论文大纲目录。您可以参考老师提供的示例报告,或者通过手机识别相关截图来获取。 其次,明确整体的语言风格和特色。调研报告通常要求“逻辑清晰、层层递进、条理分明”,您可以将范文提供给类似 Claude 2 的工具来总结语言风格,但注意不要过度限制 AI 的生成,以免影响效果。 然后,让 GPT4 按照目录逐步生成章节内容。可以在 workflow 中设置循环结构,在其生成一段章节内容后,您确认同意再进行下一章节,否则重新生成。在生成内容前,让 GPT4 判断某章节是否需要调用 webpolit 插件查询相关信息。对于需要搜索网络信息的章节,可以打上标签,让 GPT4 自主搜索信息后生成内容。 在写作过程中,您还可以利用以下常见的文章润色 AI 工具来提高论文质量: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,帮助优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 总之,生成论文需要综合运用各种方法和工具,根据自身需求选择合适的方式,不断优化和完善,以达到标准论文的要求。
2025-03-29
用deep seek撰写出小说大纲之后,怎么给提示词让其一章一章生成
以下是关于用 DeepSeek 撰写小说大纲后,如何给提示词让其一章一章生成的相关建议: 1. 模仿小说家写作:在提示词中描述特定小说家的文风特征,如鲁迅的文风特点等。 2. 控制创作字数:使用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 3. 考虑引起共鸣和关注人类共性:用 DeepSeek 写小说要注重这方面,让好文字能引起生理和情绪共鸣。 4. 优化提示词: 模糊指令优化:如将宽泛需求“写小说”修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;将主观表述“写得专业些”修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法:首轮生成获取基础内容,然后进行特征强化、风格调整和最终校验等步骤。 5. 结合其他模型:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。 需要注意的是,DeepSeek 在写文方面全面领先,但长文会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。
2025-03-25
以水稻主要物候期遥感识别为主题,生成一篇论文大纲
以下是以水稻主要物候期遥感识别为主题的一篇论文大纲示例: 一、引言 1. 研究背景与意义 2. 国内外研究现状 3. 研究目的与内容 二、水稻物候期相关理论与遥感技术基础 1. 水稻物候期的定义与特征 2. 常用的遥感技术及原理 3. 遥感数据的类型与特点 三、水稻主要物候期的遥感特征分析 1. 不同物候期水稻的光谱特征 2. 多时相遥感数据在物候期识别中的应用 3. 影响遥感识别的因素 四、水稻主要物候期遥感识别方法 1. 基于光谱特征的识别方法 2. 基于植被指数的识别方法 3. 机器学习与深度学习在物候期识别中的应用 五、实验与结果分析 1. 研究区域与数据获取 2. 实验设计与流程 3. 识别结果的精度评估 4. 结果分析与讨论 六、结论与展望 1. 研究成果总结 2. 研究的局限性 3. 未来研究方向与展望 以上大纲仅供参考,您可根据实际研究需求进行调整和完善。
2025-03-21
论文改写降重
以下是关于论文改写降重的相关信息: 在论文写作领域,AI 技术的应用正在迅速发展,为论文改写降重提供了多种辅助。以下是一些常见的方法和工具: 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,有助于提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 辅助写作方面: 一些专门的辅助写作工具,如论文改写降重工具,可以帮助文章降重和去除“AI”味。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,需要注意的是,使用 AI 生成的内容应仔细甄别。
2025-04-15
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
我要写论文,需要用什么ai工具‘
在论文写作中,以下是一些常用的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用抄袭检测工具确保原创性,做最后的格式调整。 AI 文章排版工具方面: 1. Grammarly:不仅检查语法和拼写,还具备一定排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化过程。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化生成文档,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作排版。 选择合适的 AI 文章排版工具需考虑文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。
2025-04-14
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
生成论文第一章的绪论
以下是关于生成论文第一章绪论的相关内容: 首先,确定整个论文的大纲目录。如果有老师提供的示例报告,可以直接截图并用手机识别获取目录。 其次,确定整体的语言风格和特色。一般来说,论文的语言风格应是“逻辑清晰、层层递进、条理分明”。可以将范文交给 Claude 2 总结语言风格,但注意不要过于限制 GPT4,否则可能影响生成效果。 然后,让 GPT4 按照目录逐步生成章节内容。通过在 workflow 中设置循环结构,在其生成一段章节内容后,经同意再进行下一章节,否则重新生成。 此外,在生成内容前,需要 GPT4 判断某章节是否要调用 webpolit 插件查询相关信息后再撰写。这是较难的部分,可能需要不断尝试和迭代。若遇到困难,可向星球和群聊中的大佬求助。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-04-14
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14