Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有没有multi agent相关项目可以推荐一下吗

Answer

以下是为您推荐的一些与 multi agent 相关的项目:

  1. 《Multi Agent 策略架构基础(1)》:https://waytoagi.feishu.cn/record/1sfvunQZGoT5vB2r29i9PWi6W ,其中介绍了有代表性的 Multi Agent demo 项目包括 AutoGPT、Smallville 小镇和面壁智能 ChatDev,探讨了 Multi Agent 领域的相关内容以及其面临的挑战和限制。
  2. 吴恩达最新演讲中提到的清华面壁智能的开源项目 ChatDev,展示了多智能体协作的场景,如不同身份的智能体合作开发小游戏。

此外,为您补充一些关于 multi agent 的知识: 多智能体(Multi-Agent)是由多个自主、独立的智能体(Agent)组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。

随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统受广泛关注。目前常见框架集中在单 Agent 场景,其核心是 LLM 与工具协同配合,可能需与用户多轮交互。而多 Agent 场景为不同 Agent 指定角色,通过协作完成复杂任务,与用户交互可能减少。

构建多 Agent 框架主要组成部分包括:

  • 环境(environment):所有 Agent 处于同一环境,环境包含全局状态信息,Agent 与环境有信息交互与更新。
  • 阶段(stage):采用 SOP 思想将复杂任务分解为多个子任务。
  • 控制器(controller):可以是 LLM 或预先定义好的规则,负责环境在不同 Agent 和阶段之间切换。
  • 记忆:在多 Agent 框架中,由于 Agent 数量增多,消息数量及每条消息需记录的字段也相应增加。
Content generated by AI large model, please carefully verify (powered by aily)

References

2023 年历史更新(归档)

《[Multi Agent策略架构基础(1)](https://waytoagi.feishu.cn/record/1sfvunQZGoT5vB2r29i9PWi6W)》是作者对逐渐升温的Multi Agent领域的探索,有代表性的Multi Agent demo项目包括AutoGPT、Smallville小镇和面壁智能ChatDev,Multi Agent有潜力解决复杂问题,但仍需面对挑战和限制;城主发表了一篇《[2023年的大模型:OpenAI科学家最新讲座(完整版)](https://waytoagi.feishu.cn/record/1sfvuPPwj8ZTnMvEQIwaSJRxY)》,Hyung Won Chung从Google跳到OpenAI一年多,他在网络上所做的LLM技术分享中提供了LLM在2023年的最新动向和大量技术细节,颇有价值;《[马丁的](https://waytoagi.feishu.cn/record/1sfvun2KibnFAT2lXmbW1SynB)[Character.AI](https://waytoagi.feishu.cn/record/1sfvun2KibnFAT2lXmbW1SynB)[赛道说明书](https://waytoagi.feishu.cn/record/1sfvun2KibnFAT2lXmbW1SynB)》详细分析了NPC赛道,它通过创造虚拟角色和提供陪伴服务来满足用户的需求,而不是通过认识新的人或建立人际关系。这个赛道的关键在于技术的发展和商业利益的引入,以及创作者生态的建设;

四种 Agent 设计范式(通俗易懂版)-- 吴恩达最新演讲

(这一部分介绍的比较少)现在用的比较多的就是使用Copilot进行联网搜索,以及在解决某数理逻辑问题时,调用代码插件来辅助解决。第三个是Planning(规划),非常惊艳的设计,用户输入任务,AI拆解流程、选择工具、调用、执行并输出结果。我在做一些demo时会遇到一些错误,但Agent绕过了我的错误,自主地完成了任务。我在这里举一个例子,改编自HuggingGPT这个论文,我需要生成一个图片,一个女孩在看书,她的姿势要个我给的这个图片中的男孩一样,然后你再用文字描述这篇文章。Agent的做法是,先提取该图片中男孩的姿态(可能是调用的Huggingface上的模型),然后再找到一个模型生成一张同样姿势的图片,最后再描述好生成的这张图片。Agent的效果不一定保证非常好,但大部分情况比较高效,比如我之前谷歌搜索会花费大量时间,现在我会丢一个问题给Agent,然后过一会来看它给的回复。最后一个是Multi-agent,多智能体协作(吴恩达在这里的举例,来自清华面壁智能的开源项目ChatDev)。每个Agent被赋予了不同的身份,比如有的是CEO,有的是产品经理,有的是程序员,他们互相合作互相对话,比如你让他们开发一个简单的小游戏,他们会花几分钟时间来编写代码并测试。尽管有时候不是很有效,但非常有前景和想象力,它模拟了现实生活中的工作场景,Multi-agent不仅仅只能执行单一任务,而是成为了一个复杂系统。最后是结论,我认为未来,得益于Agentic Worklfow,AI能做出来更多牛逼的应用。但现在我们等待Agent的回复需要比较长的时间,所以更快的token生成速度是很重要的(吴恩达在此又扯了个故事,表达的意思是人性就是希望即时满足)。

问:Multi-Agent是什么

多智能体(Multi-Agent)是由多个自主、独立的智能体(Agent)组成的系统。在这个系统中,每个智能体都能够感知环境、进行决策并执行任务,同时它们之间可以进行信息共享、任务协调以及协同行动,以实现整体的目标。[heading2]关于Multi-Agent[content]随着大型语言模型(LLM)的出现,以LLM为核心构建的Agent系统近期受到了广泛关注。Agent系统旨在利用LLM的归纳推理能力,为不同的Agent分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。目前,更常见的框架主要集中在单Agent场景下。单Agent的核心在于LLM与工具的协同配合。LLM根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈。在任务完成过程中,Agent可能需要与用户进行多轮交互。与此同时,越来越多的Agent框架开始关注多Agent场景。为了完成任务,多Agent会为不同的Agent指定不同的角色,并通过Agent之间的协作来完成复杂的任务。与单Agent相比,在任务完成过程中,与用户的交互可能会减少一些。[heading2]主要组成部分[content]为构建一个多Agent框架,我们需要思考相对于单Agent,框架中增加了哪些组件。环境(environment):所有Agent应该处于同一个环境中。环境中包含全局状态信息,Agent与环境之间存在信息的交互与更新。阶段(stage):为了完成复杂任务,现有多Agent框架通常采用SOP思想,将复杂任务分解为多个子任务。控制器(controller):控制器可以是LLM,也可以是预先定义好的规则。它主要负责环境在不同Agent和阶段之间的切换。记忆:在单Agent中,记忆只包括用户、LLM回应和工具调用结果等部分。而在多Agent框架中,由于Agent数量增多,导致消息数量增多。同时,每条消息可能需要记录发送方、接收方等字段。

Others are asking
AI办公赛道有什么agent
以下是关于 AI 办公赛道中一些 agent 的相关信息: 陈财猫在 AI 写作方面开发了小财鼠程序版 agent,认为 AI+内容创作是现阶段较好的赛道。 一些常见的 Agent 构建平台包括: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具。 Microsoft 的 Copilot Studio:具备外挂数据、定义流程等功能。 文心智能体:百度推出的基于文心大模型的智能体平台。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机等。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台。 钉钉 AI 超级助理:依托钉钉优势,在高频工作场景表现出色。 此外,还有关于生成式 AI 季度数据报告 2024 年 1 3 月中 Agents 的相关图谱和数据,如 a16z 图谱、E2B Agent 系列图谱等,其中提到该赛道天花板潜力达几百亿美金,总体趋势高速增长,竞争方面存在一定特点,Top1 公司如 GitLab 等相关情况。
2025-01-14
AI日常办公写作的agent可以怎么做
以下是关于 AI 日常办公写作的 agent 的一些相关内容: Notion CEO 认为,在未来 1 2 年内 AI 会有明显突破,其中被低估的领域是 RAG。现在可以直接询问 Notion AI 想要搜寻的问题获取答案,另外值得期待的是 Work Agent 也已受到很多关注。 陈财猫指出,AI + 内容创作是现阶段最好的赛道,基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,该赛道有完美的产品 模型匹配和产品 市场匹配,且天花板高。在 AI 写作的实践方面,业务包含营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 用 AI 写出好文字的方法包括:选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 在实践中,例如从场景出发裂变,有很多场景类种子,如血月降临、电梯卡 bug 等新场景可打破旧规则与世界。由一个现实生活中不存在的假设出发去衍生好看的故事也是很好的凝结核,像女频网络小说中的特定流派套路或事件类型也可作为种子。故事灵感的裂变是专门化腐朽为神奇的小说点子工具,对于刚接触写作的学员,随机性的引入有用,输入不同的日常可生长出不同的精彩故事设定。
2025-01-14
AI写作的agent可以怎么做
以下是关于 AI 写作的 agent 的相关内容: AI 写作是现阶段较好的赛道,具有完美的产品模型匹配和产品市场匹配,且天花板高。其业务包含营销和小说、短剧创作,并开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 用 AI 写出好文字的方法包括:选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 在实践方面,例如小财鼠程序版,从场景出发裂变,有很多场景类种子,如血月降临、电梯卡 bug 等新场景打破旧规则;由现实生活中不存在的假设出发衍生好看的故事也是很好的凝结核,像知乎体短故事中的常见类型;特定流派如女频网络小说中稳定的套路或事件类型也可作为种子。故事灵感的裂变是专门化腐朽为神奇的小说点子工具,学员输入日常等不同内容可生长出不同的精彩故事设定。 从赚钱和应用开发角度,有多种方式,如 Key 商、写书、卖课、接项目、做镜像站等。WebPilot 作者开发了长文写作的 Agent 并对外提供接口,效果惊艳。熟悉业务结合 AI 能力打磨产品是护城河,是 AI 应用开发者应坚持的方向。
2025-01-14
AI agent 能重构哪些场景
AI agent 在 2024 年实现了从概念到实践的关键突破,能够重构以下场景: 1. 手机操作场景:例如对着手机说“帮我给同事的朋友圈点赞”,AI 就能识别屏幕,找到相应按钮并完成操作。 2. 工作流搭建场景:可以通过自然语言构建 DSL 并还原工作流,降低用户上手门槛,例如用于 MVP 的产品测试。 3. 文案生成场景:像“Pailido|AI 拍立得”这样的产品,各个场景由 AI Agent 驱动,仅需选中场景后点击拍摄即可快速生成对应文案,包括小红书文案、外卖点评写作、闲鱼商品发布文案等。
2025-01-14
李飞飞提出的Agent AI的核心观点是什么
李飞飞提出的核心观点包括: 人工智能的下一步应从大型语言模型转向大型模型,强调视觉智能在理解和与世界互动中的重要性,计算机需要具备空间智能,能够建模、推理并在三维空间中互动。 通过空间智能,AI 将理解真实世界,能够处理视觉数据,做出预测并根据这些预测采取行动。空间智能使机器不仅能够相互交互,还能与人类以及真实或虚拟的三维世界进行交互。
2025-01-13
智能体(AI Agent)对比大模型在应用中的优势是什么
智能体(AI Agent)对比大模型在应用中的优势主要包括以下方面: 1. 能够回答私有领域问题,例如公司制度、人员信息等,而大模型存在无法回答此类问题的局限性。 2. 可以及时获取最新信息,如实时天气、比赛结果等,大模型在这方面有所不足。 3. 能准确回答专业问题,如复杂数学计算、图像生成等,大模型在这些方面表现欠佳。 4. 适用于多种客户场景,如有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务的场景,以及缺少技术人员开发大模型问答应用的情况。 5. 基于大模型,通过集成特定的外部能力,弥补大模型的不足。例如集成实时信息获取、回答私有领域问题等外部能力。 6. 典型场景丰富,包括私有领域知识问答、个性化聊天机器人、智能助手等。如私有领域知识问答,只需准备好相关知识库文件,就可在百炼控制台快速创建应用;个性化聊天机器人可通过长期记忆保存关键历史对话信息,并集成夸克搜索和图像生成等插件扩展功能;智能助手可引入 RAG 能力、长期记忆和自定义插件等功能提升工作效率。 在基准测评方面,AI Agent 智能体正在最大程度释放 LLM 潜能,逐渐成为通向 AGI 的技术共识。现有关于 Agent 能力的测评,主要在英文场景或任务,目前还没有一个在中文任务和场景上针对中文大模型的全面测评。通过测评结果发现,在 Agent 核心基础能力上,国内模型已经较为接近或部分超过 GPT3.5 水平。 从原理上看,智能体中间的“智能体”就是 LLM 或大模型,通过为其增加工具、记忆、行动、规划四个能力来实现。行业里主要用到的是 langchain 框架,它把 LLM 之间以及 LLM 和工具之间通过代码或 prompt 的形式进行串接,在 prompt 层和工具层完成主要的设计逻辑。
2025-01-13
mat1 and mat2 shapes cannot be multiplied的错误原因与解决方法
很抱歉,目前知识库中没有关于“mat1 and mat2 shapes cannot be multiplied”错误原因与解决方法的相关内容。但通常这种错误可能是由于矩阵的维度不匹配导致的。您可以检查矩阵 mat1 和 mat2 的形状,确保它们满足乘法运算的规则。例如,如果是二维矩阵相乘,第一个矩阵的列数应该等于第二个矩阵的行数。解决方法可能包括重新调整矩阵的形状,或者检查数据处理和运算的逻辑,确保矩阵的维度在进行乘法运算时是正确匹配的。
2024-10-22
Way to AGI multi-language support
以下是关于 AGI 多语言支持的相关信息: OpenVoice V2 版本已推出,支持多语言,包括英语、西班牙语、法语、中文、日语和韩语。音质有所提升,可复制任何声音,并能精细控制情感、口音和语调。相关链接:https://xiaohu.ai/p/6726 、https://x.com/imxiaohu/status/1783312237937005043 在广义语言方面,当前大多数国家之间语言的高质量翻译可以实现,编程语言之间的相互翻译能力也不错,但人的语言与机器语言之间的翻译还需改进,这需要 AI 具备更强的理解、假设和解决问题的能力,这也是 AI Agent 要实现的目标。
2024-08-15
multi agent是什么
多智能体(Multiagent)是指多个相互作用的智能体组成的系统。在人工智能领域,多智能体系统具有广泛的应用。例如,在供应链中,不同经济运营商之间的责任分配存在不确定性。就我国相关规范而言,服务提供者往往是主要责任主体。而在《人工智能法案》中,人工智能系统供应链的参与主体更为细化,包括提供者、部署商、授权代表、进口商和分发商等,它们被统称为“运营者”。2023 年《AI 法案》折衷草案在法律义务分配设计上,特别是对于高风险人工智能系统,提供者和部署商将承担主要义务。其中,提供者承担最广泛的合规义务,包括建立风险管理制度和质量管理制度等,涵盖人工智能系统生命周期的事前和事后环节;部署商的义务则主要集中于确保对高风险人工智能系统的人工监督和日常检测义务,主要覆盖人工智能生命周期的事中环节。
2024-07-07
有哪些常见的multi agent调度模式?
在多智能体(MultiAgent)系统中,常见的调度模式主要有以下几种: 1. 集中式调度(Centralized Scheduling) 在这种模式下,有一个中央控制器负责收集所有智能体的信息,并做出整体最优的决策和资源分配。常见于需要全局协调的场景,如机器人协作、交通管制等。 2. 分布式调度(Distributed Scheduling) 每个智能体根据本地信息和与其他智能体的交互来做出决策,无需中央控制器。常用于大规模、动态、开放的系统,如传感器网络、P2P 网络等。 3. 市场驱动调度(MarketDriven Scheduling) 智能体通过竞价机制获取资源和任务分配。类似于现实市场的供需规律,常用于电力负载调度、计算资源分配等领域。 4. 约束优化调度(Constraint Optimization Scheduling) 将多智能体协作问题建模为分布式约束优化问题,通过启发式或完全算法求解近似最优解。适用于任务分配、资源规划等约束严格的场景。 5. 组织结构调度(Organizational Structuring) 根据特定的组织拓扑结构(层级、同辈、联盟等)对智能体角色和协作模式进行规范,实现有序调度。常见于多机器人协作、组织自动化系统中。 6. 基于规范协议的调度(Normbased Scheduling) 定义一组协议规范来约束智能体的行为,并由规范引擎统一调度和裁决。适用于开放、异构的多智能体系统。 这些调度模式各有利弊,实际应用时需要根据系统的特点、约束和目标进行选择和设计。同时也可以采用混合模式,结合不同模式的优点。调度质量和系统性能是评价标准。
2024-04-19
Multi-Agent是什么
关于多智能体(MultiAgent) 多智能体是由多个自主、独立的智能体组成的系统。在这个系统中,每个智能体都能够感知环境、进行决策并执行任务,同时它们之间可以进行信息共享、任务协调以及协同行动,以实现整体的目标。 随着大型语言模型(LLM)的出现,以LLM为核心构建的Agent系统近期受到了广泛关注。Agent系统旨在利用LLM的归纳推理能力,为不同的Agent分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。 目前,更常见的框架主要集中在单Agent场景下。单Agent的核心在于LLM与工具的协同配合。LLM根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈。在任务完成过程中,Agent可能需要与用户进行多轮交互。 与此同时,越来越多的Agent框架开始关注多Agent场景。为了完成任务,多Agent会为不同的Agent指定不同的角色,并通过Agent之间的协作来完成复杂的任务。与单Agent相比,在任务完成过程中,与用户的交互可能会减少一些。 主要组成部分 为构建一个多Agent框架,我们需要思考相对于单Agent,框架中增加了哪些组件。 环境(environment):所有Agent应该处于同一个环境中。环境中包含全局状态信息,Agent与环境之间存在信息的交互与更新。 阶段(stage):为了完成复杂任务,现有多Agent框架通常采用SOP思想,将复杂任务分解为多个子任务。 控制器(controller):控制器可以是LLM,也可以是预先定义好的规则。它主要负责环境在不同Agent和阶段之间的切换。 记忆:在单Agent中,记忆只包括用户、LLM回应和工具调用结果等部分。而在多Agent框架中,由于Agent数量增多,导致消息数量增多。同时,每条消息可能需要记录发送方、接收方等字段。 核心交互流程 1. 控制器更新当前环境状态,选择下一时刻行动的Agent。 2. Agent与环境交互,更新自身的记忆信息。 3. Agent调用LLM,执行动作并获取输出消息。 4. 将输出消息更新到公共环境中。
2024-04-15
有没有智能消图的工具
目前市面上有以下智能消图(去水印)的工具: 1. AVAide Watermark Remover:在线工具,使用 AI 技术,支持多种图片格式(如 JPG、JPEG、PNG、GIF 等)。操作简单,上传图片、选择水印区域,保存并下载处理后的图片,还提供去除文本、对象、人物、日期和贴纸等功能。 2. Vmake:提供 AI 去除图片水印功能,可上传最多 10 张图片,AI 自动检测并移除水印,处理完成后可保存生成的文件,适合需快速去水印及在社交媒体分享图片的用户。 3. AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中多余物体、人物或水印,不留痕迹。支持直接粘贴图像或上传手机图像,操作简便。 这些工具各有特点,您可根据具体需求选择最适合的去水印工具。内容由 AI 大模型生成,请仔细甄别。
2025-01-15
有没有什么能够把手绘扩展成插画的 AI?
以下是一些能够把手绘扩展成插画的 AI 工具或方法: 1. Stable Diffusion:在有参考图的情况下,可以对原图进行风格化转变。若要创作原创卡通插画,可不使用 ControlNet。通过调整提示词,如“一个女孩坐在沙发上,吃西瓜,看电视,夏天”,能生成插画。完成后可能存在小瑕疵,可在 PS 里后期修复。 2. 公众号【白马与少年】:如果想要相关模型和 Lora,可以添加该公众号,回复【SD】获取。 需要注意的是,在使用这些工具时,可能需要一定的操作技巧和相关知识。
2025-01-13
有没有好用的提示词优化工具
以下为您介绍一些好用的提示词优化工具: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言(如一个长头发的金发女孩)和单个词组(如女孩、金发、长头发)输入,且支持中英文。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 小白用户可点击提示词上方官方预设词组进行生图。 写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 可调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词能帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 具备辅助功能,如翻译功能可一键将提示词翻译成英文,还能删除所有提示词,会员加速能提升图像生图速度和效率。 2. Midjourney Bot 的 /shorten 命令: 最短的提示,Option 5:tower of donuts,sprinkles 产生了最接近原始目标的图像。 许多填充词,如“异想天开”“令人着迷”和“杰作”可以省略。 了解“塔”和“魔法”被认为是重要的标记有助于解释为什么一些图像是用童话城堡元素生成的。 了解这一点提供了一条线索:如果目标是制作一堆美味的甜甜圈,则应该从提示中删除“神奇”。 该 /shorten 命令是一个工具,可帮助您探索 Midjourney Bot 如何解释标记并尝试单词,但可能不适用于所有主题和提示风格。
2025-01-11
有没有专门翻译的ai软件
以下是一些专门用于翻译的 AI 软件: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-10
有没有可以观看英文视频直接即时翻译的AI
以下是一些与观看英文视频直接即时翻译相关的 AI 应用和解决方案: 1. GPT 在官方发布的视频中,能够为英语用户和西班牙语用户进行实时翻译,具有近乎惊人的反应速度。 2. 开发的 AI 双语字幕方案: 用 whisper 生成原视频的英文字幕。 让 GPT 结合字幕全文翻译,并根据原英文字幕的拆分,将译文进行同样行数的拆分。 将 GPT 译文拆分的结果插入到原英文字幕文件中形成新的双语字幕文件。 3. 100 个 AI 应用中的相关例子,如科大讯飞翻译耳机,能够实现实时语言翻译,方便交流。 希望这些信息对您有所帮助。
2025-01-10
有没有可以观看英文视频直接翻译的AI
以下是一些可以观看英文视频直接翻译的 AI 相关信息: 一种解决方案是:先用 whisper 生成原视频的英文字幕,预设 whisper 生成的字幕没问题(whisper 的问题不探讨);然后让 GPT 结合字幕全文翻译,并让其根据原英文字幕的拆分,将译文进行同样行数的拆分;最后将 GPT 译文拆分的结果插入到原英文字幕文件中形成一个新的双语字幕文件。这个过程中所有的执行脚本都是让 GPT 写的。 以下是几个视频 AIGC 工具: Opusclip:利用长视频剪成短视频。 Raskai:短视频素材直接翻译至多语种。 invideoAI:输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频。 descript:屏幕/播客录制>PPT 方式做视频。 veed.io:自动翻译自动字幕。 clipchamp:微软的 AI 版剪映。 typeframes:类似 invideoAI,内容呈现文本主体比重更多。 google vids:一口大饼。
2025-01-10
神经网络相关书籍推荐
以下是为您推荐的神经网络相关书籍: 1. 《这就是 ChatGPT》:作者被称为“在世的最聪明的人”,研究神经网络几十年,创作了 Mathematica、Wolfram 等备受推崇的软件。该书的导读序是美团技术学院院长刘江老师回顾了整个 AI 技术发展的历史,对于了解 AI、大语言模型计算路线的发展,起到提纲挈领的作用。 2. 关于神经网络信念网络方面的研究文献: Gail A.Carpenter and Stephen Grossberg.1988.The ART of Adaptive Pattern Recognition by a SelfOrganizing Neural Network.Computer 21,3,7788. H.Bourlard and Y.Kamp.1988.Autoassociation by multilayer perceptrons and singular value decomposition.Biol.Cybern.59,45,291294. P.Baldi and K.Hornik.1989.Neural networks and principal component analysis:learning from examples without local minima.Neural Netw.2,1,5358. Hinton,G.E.&Zemel,R.S.,Autoencoders,Minimum Description Length and Helmholtz Free Energy.,in Jack D.Cowan;Gerald Tesauro&Joshua Alspector,ed.,‘NIPS’,Morgan Kaufmann,,pp.310. Ackley,D.H.,Hinton,G.E.,&Sejnowski,T.J.,147169. LeCun,Y.,Chopra,S.,Hadsell,R.,Ranzato,M.,&Huang,F..A tutorial on energybased learning.Predicting structured data,1,0. Neal,R.M.,71113. Hinton,G.E.,Dayan,P.,Frey,B.J.,&Neal,R.M.,11581161. 此外,您还可以参考“三本神经科学书籍”,原文地址:https://web.okjike.com/originalPost/64f2b8ff0c915376a20c5d61 作者:
2025-01-14
AI语音,变声器推荐
以下是为您推荐的一些 AI 语音变声器: :提供实时语音和口音转换流媒体服务。 :为高效在线会议提供的 AI 驱动软件解决方案。 :免费的实时语音变换器。 :为创作者、开发者和虚拟会议提供的降噪产品。 :其软件在复杂声学环境中提升语音的清晰度和可懂度。 :声称不制作音频,而是让音频更好。 :用于会议和音频的降噪。 :采用最先进的 AI 技术消除视频会议通话中的所有背景噪音。 :一套 AI 驱动的音频质量增强工具。 :将智能手机变成高级语音增强设备的应用程序。 :去除干扰性背景噪音的智能手机应用程序。 :用于音频和语音产品的智能音频解决方案。 :通过引入机器学习功能来革新麦克风。 :生成式 AI 音频增强。 此外,还有以下相关资源和工具: 实时变声的 sovits 一键包: 基于 sovits4.0 一键包 2.0 链接:https://share.weiyun.com/Afv83T5j 密码:INT16 链接:https://pan.baidu.com/s/1Vx0BnpkmPIRziQtORFvJg?pwd=INT8 提取码:INT8 不需要安装 python 和 cuda,双击运行 Hugging face 可以直接测试的模型:https://huggingface.co/spaces/akhaliq/RealTimeVoiceCloning 达摩院的产品,可以在线测试:https://modelscope.cn/studios/damo/personal_tts/summary 软件界面,支持加载各种 VC(它使用各种语音转换 AI(VC,Voice Conversion)为客户进行实时语音转换):https://github.com/wokada/voicechanger 语言声音 AI 模型相关: 使用 AI 的实时语音转换器(Trainer):https://github.com/isletennos/MMVC_Trainer AI 孙燕姿音色训练 svc:https://github.com/svcdevelopteam/sovitssvc 基于检索的语音转换 WebUI,一基为 VITS 简单易用的语言转换器(语音转换器)框架:https://github.com/liujing04/RetrievalbasedVoiceConversionWebUI 基于 DDSP(可微分数字信号处理)的实时端到端歌声转换系统:https://github.com/yxlllc/DDSPSVC 浅扩散模型(DDSP+DiffSVC 重构版)
2025-01-14
个人AI推荐
以下是为您提供的个人 AI 推荐: 对于技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,尝试用 AI 辅助编码,熟悉其能力和局限性。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor,从生成注释或简单函数逐步过渡到复杂任务。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块,与开发者交流,了解最新趋势。 4. 构建 AI 驱动的项目,如开发聊天机器人或图像识别应用,深入理解实际应用过程。 对于内容创作者: 1. 利用 AI 辅助头脑风暴,针对主题生成创意方向并选择深化。 2. 建立 AI 写作流程,从生成文章大纲开始,逐步让 AI 扩展段落或提供数据支持。 3. 探索多语言内容,用 AI 辅助翻译和本地化内容,从一篇博文开始逐步扩大。 4. 借助 AI 工具优化 SEO,根据建议调整标题、元描述和关键词使用。 私人定制类产品: 1. 允许用户对 AI 模型进行个性化选择。 2. 支持用户创建自己的 AI Agent 满足特定需求。 3. 支持设计和实现自定义工作流程。 4. 通常需要一定前端技术知识,能提供更大灵活性和创造空间,但学习成本较高,适合愿意投入时间和精力深入了解 AI 技术并适配自身需求的用户。
2025-01-13
AI推荐
以下是一些 AI 的应用场景: 1. 医疗药品零售领域: 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 2. 其他领域: 医疗保健: 医学影像分析:AI 可以用于分析医学图像,例如 X 射线、CT 扫描和 MRI,以辅助诊断疾病。 药物研发:AI 可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。 个性化医疗:AI 可以用于分析患者数据,为每个患者提供个性化的治疗方案。 机器人辅助手术:AI 可以用于控制手术机器人,提高手术的精度和安全性。 金融服务: 风控和反欺诈:AI 可以用于识别和阻止欺诈行为,降低金融机构的风险。 信用评估:AI 可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 投资分析:AI 可以用于分析市场数据,帮助投资者做出更明智的投资决策。 客户服务:AI 可以用于提供 24/7 的客户服务,并回答客户的常见问题。 零售和电子商务: 产品推荐:AI 可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。 搜索和个性化:AI 可以用于改善搜索结果并为每个客户提供个性化的购物体验。 动态定价:AI 可以用于根据市场需求动态调整产品价格。 聊天机器人:AI 可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。 制造业: 预测性维护:AI 可以用于预测机器故障,帮助工厂避免停机。 质量控制:AI 可以用于检测产品缺陷,提高产品质量。 供应链管理:AI 可以用于优化供应链,提高效率和降低成本。 机器人自动化:AI 可以用于控制工业机器人,提高生产效率。 交通运输:(未具体列举相关应用) 此外,还有如 AI 儿童安全座椅推荐系统、AI 汽车保养套餐推荐系统、AI 物流快递柜管理系统、AI 招聘面试模拟平台、AI 房地产装修设计平台等特定领域的应用。
2025-01-13
法律咨询ai、agent推荐
以下为为您推荐的法律咨询 AI 和 agent: 法信智能法律咨询:这是一个 AI 法律咨询助手,运用自然语言处理和知识图谱技术,能够解答法律问题并提供法律咨询。其市场规模达数亿美元。 Casetext:在法律领域表现出色,2023 年 4 月访问量约 479 万,2024 年 3 月增至 628 万,占比提升至 68%。它是法律赛道的领先产品,可能因提供高质量法律信息和工具而受用户青睐。
2025-01-13
AI律师,法律咨询类如何借助ai来搞定,推荐文章和工具
以下是关于法律咨询类如何借助 AI 来搞定的相关内容: 潘帅提出,使用 AI 进行数据分析时,应将各环节分开处理以优化性能和便于发现修正问题。针对复杂问题,律师可逐步深化细化提问方式。要给 AI 提供参考和学习内容,包括操作指南、行业最佳实践、案例研究等,并编写详细流程和知识。利用专业领域术语引导 AI 回答方向,如在处理合同纠纷时提示特定方面。使用 AI 回答后要进行交叉验证,结合自身专业知识筛选判断。还可指定 AI 模仿资深律师的风格,要求其提供多个例子和从多个角度思考,如给出多种诉讼策略并分析优劣。 陶力文律师认为不能期待设计一个完美的提示词让 AI 百分百给出完美答案,应把提示词当作相对完善的“谈话方案”,在对话中产生成果。对于尝试 AI 的朋友,建议多给 AI 几轮对话修正的余地,不要期望一次输入就得到想要的东西。 潘帅还提到了 PEMSSC 方法,包括个性化的风格、给参考或一定逻辑结构、从多个角度思考、总结概括、区分以及明确能力或角色,并分别举例说明了如何应用。
2025-01-13