智能体(Agent)在人工智能和计算机科学领域是一个非常重要的概念,指的是一种能够感知环境并采取行动以实现特定目标的实体,可以是软件程序,也可以是硬件设备。
智能体可以根据其复杂性和功能分为以下几种类型:
在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分:
随着 LLM 在几个关键能力上的成熟——理解复杂输入、进行推理和规划、可靠使用工具以及从错误中恢复,智能体开始在生产环境中涌现。智能体通过与人类用户的命令或交互式对话开始工作。一旦任务明确,智能体就会独立进行规划和操作,必要时会向人类寻求更多信息或判断。在执行过程中,智能体需要在每个步骤从环境中获取“基准事实”(如工具调用结果或代码执行情况)以评估其进展。智能体可以在检查点或遇到障碍时暂停等待人类反馈。任务通常在完成时终止,但也常常包含停止条件(如最大迭代次数)以保持控制。
智能体适用于难以或无法预测所需步骤数量的开放性问题,且无法硬编码固定路径的场景。LLM 可能需要运行多个回合,您必须对其决策能力有一定信任。智能体的自主性使其非常适合在可信环境中扩展任务,但智能体的自主性也意味着更高的成本和潜在的错误累积。我们建议在沙盒环境中进行广泛测试,并设置适当的防护措施。
以下是一些实用案例:
智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。2.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。3.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。4.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。5.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。
"智能体"(Agent)在人工智能和计算机科学领域是一个非常重要的概念。它指的是一种能够感知环境并采取行动以实现特定目标的实体。智能体可以是软件程序,也可以是硬件设备。以下是对智能体的详细介绍:[heading3]智能体的定义[content]智能体是一种自主系统,它可以通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在LLM支持的自主Agent系统中,LLM充当Agents的大脑,并辅以几个关键组成部分:规划子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。记忆短期记忆:所有的上下文学习都是利用模型的短期记忆来学习。长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。工具使用Agents学习调用外部API来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。
随着LLM在几个关键能力上的成熟——理解复杂输入、进行推理和规划、可靠使用工具以及从错误中恢复,智能体开始在生产环境中涌现。智能体通过与人类用户的命令或交互式对话开始工作。一旦任务明确,智能体就会独立进行规划和操作,必要时会向人类寻求更多信息或判断。在执行过程中,智能体需要在每个步骤从环境中获取"基准事实"(如工具调用结果或代码执行情况)以评估其进展。智能体可以在检查点或遇到障碍时暂停等待人类反馈。任务通常在完成时终止,但也常常包含停止条件(如最大迭代次数)以保持控制。智能体虽然可以处理复杂任务,但其实现往往很直接。它们通常只是基于环境反馈在循环中使用工具的LLM。因此,清晰而深思熟虑地设计工具集及其文档至关重要。我们在附录2("工具的提示工程")中详细探讨了工具开发的最佳实践。使用场景:智能体适用于难以或无法预测所需步骤数量的开放性问题,且无法硬编码固定路径的场景。LLM可能需要运行多个回合,您必须对其决策能力有一定信任。智能体的自主性使其非常适合在可信环境中扩展任务。智能体的自主性意味着更高的成本和潜在的错误累积。我们建议在沙盒环境中进行广泛测试,并设置适当的防护措施。实用案例:以下是我们自己的实践案例:用于解决SWE-bench任务的编码智能体,根据任务描述对多个文件进行编辑:https://www.anthropic.com/research/swe-bench-sonnet我们的"计算机使用"参考实现,让Claude使用计算机完成任务:https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo