直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

Multi-Agent是什么

回答

关于多智能体(Multi-Agent)

多智能体是由多个自主、独立的智能体组成的系统。在这个系统中,每个智能体都能够感知环境、进行决策并执行任务,同时它们之间可以进行信息共享、任务协调以及协同行动,以实现整体的目标。

随着大型语言模型(LLM)的出现,以LLM为核心构建的Agent系统近期受到了广泛关注。Agent系统旨在利用LLM的归纳推理能力,为不同的Agent分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。

目前,更常见的框架主要集中在单Agent场景下。单Agent的核心在于LLM与工具的协同配合。LLM根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈。在任务完成过程中,Agent可能需要与用户进行多轮交互。

与此同时,越来越多的Agent框架开始关注多Agent场景。为了完成任务,多Agent会为不同的Agent指定不同的角色,并通过Agent之间的协作来完成复杂的任务。与单Agent相比,在任务完成过程中,与用户的交互可能会减少一些。

主要组成部分

为构建一个多Agent框架,我们需要思考相对于单Agent,框架中增加了哪些组件。

  • 环境(environment):所有Agent应该处于同一个环境中。环境中包含全局状态信息,Agent与环境之间存在信息的交互与更新。

  • 阶段(stage):为了完成复杂任务,现有多Agent框架通常采用SOP思想,将复杂任务分解为多个子任务。

  • 控制器(controller):控制器可以是LLM,也可以是预先定义好的规则。它主要负责环境在不同Agent和阶段之间的切换。

  • 记忆:在单Agent中,记忆只包括用户、LLM回应和工具调用结果等部分。而在多Agent框架中,由于Agent数量增多,导致消息数量增多。同时,每条消息可能需要记录发送方、接收方等字段。

核心交互流程

  1. 控制器更新当前环境状态,选择下一时刻行动的Agent。
  2. Agent与环境交互,更新自身的记忆信息。
  3. Agent调用LLM,执行动作并获取输出消息。
  4. 将输出消息更新到公共环境中。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
AI agent和智能体有什么区别
AI agent 和智能体在以下方面存在区别: 1. 概念侧重点:AI agent 更强调作为数字人的大脑,拥有记忆模块等,以实现更真实的交互;智能体则被视为智能的最小单元,是可以设定目标后主动完成任务的。 2. 能力构成:AI agent 主要通过接入大语言模型,并结合工具、记忆、行动、规划等能力来发挥作用;智能体不仅具备推理能力,还能执行全自动化业务,但目前许多相关产品仍需人类参与。 3. 实现方式:AI agent 目前行业里主要通过如 langchain 框架,在 prompt 层和工具层完成设计,将大模型与工具进行串接;智能体在实现上可能涉及更多复杂的技术和逻辑。
2024-11-12
我想从互联网上搜集某些类型的论文,并且自动整理成我想要的格式,有什么基于大模型的agent或者软件推荐吗
以下是一些基于大模型的 agent 或者软件,可帮助您从互联网上搜集某些类型的论文并自动整理成您想要的格式: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,可高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,在 AI 文章排版方面,以下工具可供选择: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-09
我如果要自建一个Agent,该怎么做
自建一个 Agent 可以按照以下步骤进行: 1. 从案例入门 三分钟捏 Bot Step 1:(10 秒)登录控制台 登录扣子控制台(coze.cn)。 使用手机号或抖音注册/登录。 Step 2:(20 秒)在我的空间创建 Agent 在扣子主页左上角点击“创建 Bot”。 选择空间名称为“个人空间”、Bot 名称为“第一个 Bot”,并点击“确认”完成配置。如需使用其他空间,请先创建后再选择;Bot 名称可以自定义。 Step 3:(30 秒)编写 Prompt 填写 Prompt,即自己想要创建的 Bot 功能说明。第一次可以使用一个简短的词语作为 Prompt 提示词。 Step 4:(30 秒)优化 Prompt 点击“优化”,使用来帮忙优化。 Step 5:(30 秒)设置开场白 Step 6:(30 秒)其他环节 Step 7:(30 秒)发布到多平台&使用 2. 进阶之路 15 分钟做什么 查看下其他 Bot,获取灵感 1 小时做什么 找到和自己兴趣、工作方向等可以结合的 Bot,深入沟通 阅读以下文章:文章 1、文章 2、文章 3 一周做什么 了解基础组件 寻找不错的扣子,借鉴&复制 加入 Agent 共学小组 尝试在群里问第一个问题 一个月做什么 合理安排时间 参与 WaytoAGI Agent 共学计划 自己创建 Agent,并分享自己捏 Bot 的经历和心得 3. 在 WaytoAGI 有哪些支持 文档资源 交流群 活动 工具篇: 1. 人和动物的本质区别之一,就是会使用工具,因此工具也是智能体中非常基础和重要的一环。 2. 通常 Agent 框架中会自带非常多的工具,请先熟悉这些自带的工具。 制作工具 互联网 API 工具:Jina 说明: 手册:https://jina.ai/ 工具:高德 API 说明:是高德地图提供的一套开放接口,可以实现地图展示、地理编码、逆地理编码、路径规划、地点搜索等功能。开发者可以通过调用这些 API 来实现自己的地图应用。 手册:https://lbs.amap.com/api/ 本机软件 自行构建 平台自带工具/插件 特别推荐:大聪明的插件:webcopilot Coze.cn 插件列表: coze 插件说明文档 👀小技巧:采用罗文提供的提示词可以获取插件说明:(⚠️施工中...目前差错非常多,暂时处于不可用状态,在后续持续的共创活动中将逐步完善) 文章:LLM 驱动的自主 Agents | Lilian Weng 1. 实例探究 概念验证示例 引起了人们对建立以 LLM 作为主控制器的自治 Agents 的可能性的广泛关注。考虑到自然语言界面,它存在很多可靠性问题,但仍然是一个很酷的概念验证演示。AutoGPT 中的很多代码都是关于格式解析的。 这是 AutoGPT 使用的系统消息,其中{{...}}是用户输入。 是另一个项目,用于根据自然语言指定的任务创建整个代码存储库。GPTEngineer 被指示思考一系列较小的组件来构建,并根据需要要求用户提供输入以澄清问题。 以下是发送到 GPTEngineer 使用的 OpenAI ChatCompletion 端点的用于说明任务的示例对话。用户输入被包装在{{user input text}}。 然后,在这些澄清之后,Agents 进入代码编写模式并显示不同的系统消息。系统消息: 对话样本:
2024-11-08
agent案例
以下是为您提供的关于 Agent 的相关案例和信息: 四种 Agent 设计范式: Reflection(反思):类似于 AI 的自我纠错和迭代。例如让用 Reflection 构建好的 AI 系统写代码,AI 会把代码加上检查正确性和修改的话术再返回给自己,然后反复进行,完成自我迭代。 Tool Use(工具使用):大语言模型调用插件,极大拓展了 LLM 的边界能力。 智能体的类型: 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器。 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并采取行动。例如自动驾驶汽车。 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估行动方案并选择最优行动。例如机器人导航系统。 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。例如金融交易智能体。 学习型智能体(Learning Agents):能够通过与环境交互不断改进性能,学习模型、行为策略和目标函数。例如强化学习智能体。 从产品角度思考 Agent 设计: Agent 可以是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可设计简短背景故事。 写好角色个性包括:编写背景故事明确起源、经历和动机;定义性格特点和说话方式风格;设计对话风格;明确核心功能和附加功能。
2024-11-05
AI Agent 规划是什么,怎么使用
AI Agent 规划是一个复杂但关键的概念,主要包括以下方面: 自行规划任务执行的工作流路径,适用于简单或线性流程的运行。例如,先识别男孩的姿势,再利用相关模型合成新的女孩图像,接着使用特定模型处理,最后进行语音合成输出。 包含子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标,以处理复杂任务。反思与改进则可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。 规划通常涉及五种主要方法: 任务分解:将复杂任务分解为简单子任务以简化问题,如 CoT(2022)、ReAct(2022)、HuggingGPT(2023)等。 多计划选择:生成多个备选计划并通过搜索算法选择最优计划执行,如 ToT(2023)、GoT(2023)、LLMMCTS(2023)。 外部模块辅助规划:引入外部规划器来提升规划过程,解决效率和可行性问题,如 LLM+P(2023)、LLMDP(2023)、DRRN(2015)。 反思与细化:通过反思和细化提高规划能力,纠正错误,如 Reflexion(2023)、CRITIC(2023)、SelfRefine(2023)。 记忆增强规划:利用额外记忆模块增强规划能力,存储有价值的信息,如 REMEMBER(2023)、MemoryBank(2023)。 在使用方面,AI Agent 的规划可以帮助其更高效、准确地完成任务,例如在多角色协作的场景中,不同角色的 Agent 相互协作,根据需求共同开发一个应用或者复杂程序。同时,OpenAI 的研究主管 Lilian Weng 提出了“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。
2024-11-05
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
mat1 and mat2 shapes cannot be multiplied的错误原因与解决方法
很抱歉,目前知识库中没有关于“mat1 and mat2 shapes cannot be multiplied”错误原因与解决方法的相关内容。但通常这种错误可能是由于矩阵的维度不匹配导致的。您可以检查矩阵 mat1 和 mat2 的形状,确保它们满足乘法运算的规则。例如,如果是二维矩阵相乘,第一个矩阵的列数应该等于第二个矩阵的行数。解决方法可能包括重新调整矩阵的形状,或者检查数据处理和运算的逻辑,确保矩阵的维度在进行乘法运算时是正确匹配的。
2024-10-22
Way to AGI multi-language support
以下是关于 AGI 多语言支持的相关信息: OpenVoice V2 版本已推出,支持多语言,包括英语、西班牙语、法语、中文、日语和韩语。音质有所提升,可复制任何声音,并能精细控制情感、口音和语调。相关链接:https://xiaohu.ai/p/6726 、https://x.com/imxiaohu/status/1783312237937005043 在广义语言方面,当前大多数国家之间语言的高质量翻译可以实现,编程语言之间的相互翻译能力也不错,但人的语言与机器语言之间的翻译还需改进,这需要 AI 具备更强的理解、假设和解决问题的能力,这也是 AI Agent 要实现的目标。
2024-08-15
multi agent是什么
多智能体(Multiagent)是指多个相互作用的智能体组成的系统。在人工智能领域,多智能体系统具有广泛的应用。例如,在供应链中,不同经济运营商之间的责任分配存在不确定性。就我国相关规范而言,服务提供者往往是主要责任主体。而在《人工智能法案》中,人工智能系统供应链的参与主体更为细化,包括提供者、部署商、授权代表、进口商和分发商等,它们被统称为“运营者”。2023 年《AI 法案》折衷草案在法律义务分配设计上,特别是对于高风险人工智能系统,提供者和部署商将承担主要义务。其中,提供者承担最广泛的合规义务,包括建立风险管理制度和质量管理制度等,涵盖人工智能系统生命周期的事前和事后环节;部署商的义务则主要集中于确保对高风险人工智能系统的人工监督和日常检测义务,主要覆盖人工智能生命周期的事中环节。
2024-07-07
有哪些常见的multi agent调度模式?
在多智能体(MultiAgent)系统中,常见的调度模式主要有以下几种: 1. 集中式调度(Centralized Scheduling) 在这种模式下,有一个中央控制器负责收集所有智能体的信息,并做出整体最优的决策和资源分配。常见于需要全局协调的场景,如机器人协作、交通管制等。 2. 分布式调度(Distributed Scheduling) 每个智能体根据本地信息和与其他智能体的交互来做出决策,无需中央控制器。常用于大规模、动态、开放的系统,如传感器网络、P2P 网络等。 3. 市场驱动调度(MarketDriven Scheduling) 智能体通过竞价机制获取资源和任务分配。类似于现实市场的供需规律,常用于电力负载调度、计算资源分配等领域。 4. 约束优化调度(Constraint Optimization Scheduling) 将多智能体协作问题建模为分布式约束优化问题,通过启发式或完全算法求解近似最优解。适用于任务分配、资源规划等约束严格的场景。 5. 组织结构调度(Organizational Structuring) 根据特定的组织拓扑结构(层级、同辈、联盟等)对智能体角色和协作模式进行规范,实现有序调度。常见于多机器人协作、组织自动化系统中。 6. 基于规范协议的调度(Normbased Scheduling) 定义一组协议规范来约束智能体的行为,并由规范引擎统一调度和裁决。适用于开放、异构的多智能体系统。 这些调度模式各有利弊,实际应用时需要根据系统的特点、约束和目标进行选择和设计。同时也可以采用混合模式,结合不同模式的优点。调度质量和系统性能是评价标准。
2024-04-19