Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能的分类

Answer

人工智能主要有以下分类和应用场景:

分类:

  1. 按照智能水平:
    • 弱人工智能(ANI):只能做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。
    • 通用人工智能(AGI):能做任何人类可以做的事。
    • AGI 的五个发展等级:
      • 聊天机器人(Chatbots):具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。
      • 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。
      • 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。
      • 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。
      • 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

应用场景:

  1. 医疗保健:
    • 医学影像分析:辅助诊断疾病。
    • 药物研发:加速药物研发过程。
    • 个性化医疗:提供个性化治疗方案。
    • 机器人辅助手术:提高手术精度和安全性。
  2. 金融服务:
    • 风控和反欺诈:降低金融机构风险。
    • 信用评估:帮助做出贷款决策。
    • 投资分析:辅助做出投资决策。
    • 客户服务:提供 24/7 服务并回答常见问题。
  3. 零售和电子商务:
    • 产品推荐:根据客户数据推荐感兴趣的产品。
    • 搜索和个性化:改善搜索结果和提供个性化购物体验。
    • 动态定价:根据市场需求调整产品价格。
    • 聊天机器人:回答客户问题和解决问题。
  4. 制造业:
    • 预测性维护:预测机器故障避免停机。
    • 质量控制:检测产品缺陷提高质量。
    • 供应链管理:优化供应链提高效率和降低成本。
    • 机器人自动化:提高生产效率。
  5. 交通运输:(具体应用未详细说明)
Content generated by AI large model, please carefully verify (powered by aily)

References

问:AGI 的 5 个等级是什么?

OpenAI在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级。OpenAI自2015年成立以来,一直将AGI作为其战略目标之一,随着ChatGPT、多模态大模型和AI Agent等技术的发展,我们似乎越来越接近实现这一目标。AGI的五个等级分别为:1.聊天机器人(Chatbots):具备基本对话能力的AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。2.推理者(Reasoners):具备人类推理水平的AI,能够解决复杂问题,如ChatGPT,能够根据上下文和文件提供详细分析和意见。3.智能体(Agents):不仅具备推理能力,还能执行全自动化业务的AI。目前许多AI Agent产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。4.创新者(Innovators):能够协助人类完成新发明的AI,如谷歌DeepMind的AlphaFold模型,可以预测蛋白质结构,加速科学研究和新药发现。5.组织(Organizations):最高级别的AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

学习笔记:AI for everyone吴恩达

AI分为ANI和AGI,ANI得到巨大发展但是AGI还没有取得巨大进展。ANI,artificial narrow intelligence弱人工智能。这种人工智能只可做一件事,如智能音箱,网站搜索,自动驾驶,工厂与农场的应用等。AGI,artificial general intelligence,做任何人类可以做的事[heading5]机器学习[content]监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

Others are asking
人工智能权利法案蓝图
以下是关于《人工智能权利法案蓝图》的相关内容: 一、总体概述 《人工智能权利法案蓝图》(Blueprint for an AI Bill of Rights)旨在保障公民在人工智能应用中的各项权利。 二、具体应用 1. 公民权利、公民自由和隐私 在公共和私营部门,保护公民的言论自由、投票自由,免受歧视、过度惩罚、非法监视以及侵犯隐私和其他自由。 保障机会均等,包括公平获得教育、住房、信贷、就业和其他计划的机会。 确保公民能够获得关键资源或服务,如医疗保健、金融服务、安全、社会服务、有关商品和服务的非欺骗性信息以及政府福利。 2. 数据隐私 公民应通过内置保护措施免受滥用数据行为的影响,对自身数据的使用拥有代理权。 设计应选择保护公民免受隐私侵犯,默认包含数据保护,确保数据收集符合合理期望,仅收集特定上下文严格必需的数据。 自动化系统的相关人员应寻求公民许可并尊重其关于数据收集、使用、访问、传输和删除的决定;若无法做到,应采用替代的隐私设计保护措施。 系统不应采用混淆用户选择的用户体验和设计决策,或通过侵犯隐私的默认设置给用户带来负担。 仅在适当且有意义的情况下,才以同意证明数据收集的合理性,同意请求应简短、易懂,并为用户提供数据收集和使用环境的代理权,改变当前难以理解的数据通知和选择做法。 加强对敏感领域(如健康、工作、教育、刑事司法和金融)相关数据和推论以及青少年数据的保护和限制。 禁止在敏感领域滥用数据,相关数据和推论只能用于必要功能,并受到道德审查和使用禁令的保护。 公民和社区应免受不受控制的监视,监视技术应受到加强监督,包括进行部署前评估,以保护隐私和公民自由。持续监视和监测不应在教育、工作、住房等可能限制权利、机会或访问的环境中使用。只要有可能,公民应有权访问报告,以确认数据决策得到尊重,并评估监控技术的潜在影响。
2025-01-10
什么是人工智能
人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 最初,查尔斯·巴贝奇发明了计算机,现代计算机虽先进,但仍遵循受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机做事。 但有些任务无法明确编程,如根据照片判断人的年龄,因为我们不清楚大脑完成此任务的具体步骤。这类任务正是人工智能感兴趣的。 AI 分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 得到巨大发展,只能做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 则能做任何人类可以做的事。 人工智能术语包括: 机械学习:学习输入输出,从 A 到 B 的映射。让电脑在不被编程的情况下自己学习。 数据科学:分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 等。 神经网络/深度学习:有输入层、输出层、中间层(隐藏层)。
2025-01-10
什么是人工智能,强人工智能和弱人工智能的对比,用表格的形式
|对比维度|弱人工智能|强人工智能| |||| |定义|针对特定任务或范围较小的任务来设计和训练的 AI 系统|具有人类水平的智能和理解能力的 AI 系统| |能力特点|不是通用智能,只擅长执行提前定义好的任务,缺乏真正的理解和意识|有能力完成任何人类可以完成的智力任务,适用于不同领域,拥有某种形式的意识或自我意识| |示例|Siri 或 Alexa 等虚拟助手,流媒体服务所使用的推荐算法,为特定客服任务所设计的对话机器人|目前还只是理论概念,尚未有达到此水平的 AI 系统| |认知能力|不具备像人类一样的认知能力,无法超出设定范围解决一般问题|具备通用智能水平|
2025-01-10
什么是弱人工智能
弱人工智能指的是针对特定任务或范围较小的任务来设计和训练的 AI 系统。 这些 AI 系统不是通用智能的,只擅长执行提前定义好的任务,但缺乏真正的理解和意识。它们不具备像人类一样的认知能力,也无法超出为它设定的小范围领域来解决一般问题。 弱人工智能是高度专业化的,例如 Siri 或 Alexa 等虚拟助手,流媒体服务所使用的推荐算法,以及为特定客服任务所设计的对话机器人。 ANI(artificial narrow intelligence)即弱人工智能,得到了巨大发展,比如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。
2025-01-10
从评审导师的角度优化“人工智能驱动企业供应链效率影响研究——基于专精特新中小企业的实证数据”这个工商学术研究生学位论文题目
作为评审导师,以下是对这个论文题目的一些优化建议: “人工智能对专精特新中小企业供应链效率的驱动作用及影响研究——基于实证数据分析” 这样的表述更加清晰地突出了人工智能的驱动作用,并且明确了是基于实证数据进行的分析。您觉得如何?
2025-01-08
人工智能会带来什么影响
人工智能会带来多方面的影响,主要包括以下几点: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括工作的变化,但大多数工作的变化速度会比人们想象的慢。 2. 社会服务和福利:在获得和享受特定的必要的私人和公共服务和福利方面,如医疗保健服务、社会保障福利等,使用人工智能系统可能会对人们的生计产生重大影响,也可能侵犯基本权利。 3. 应用场景不断扩展: 交通领域:用于自动驾驶、交通管理等,提高交通安全性和效率,缓解交通拥堵。 物流配送:优化物流路线和配送计划,降低运输成本,还包括无人机送货。 其他领域:在教育中提供个性化学习体验,在农业中分析农田数据提高农作物产量和质量,在娱乐中开发虚拟现实和增强现实体验,在能源中优化能源使用提高效率等。 总之,人工智能如同其他技术一样,既有积极影响也有负面影响,我们需要努力发挥其优势,减少危害,以实现其对社会的最大价值。
2025-01-08
中外开源模型概览与分类
以下是关于中外开源模型的概览与分类: 国内方面: 国内模型在 Agent 核心基础能力上已较为接近或部分超过 GPT3.5 水平。 如 ChatGLM3Turbo 在任务分解、多文档问答和检索 API 能力上表现出色。 国内开源模型如 Baichuan213BChat 具备较强竞争力,在某些方面超过一些闭源模型。 国外方面: OpenAI 发布了开源模型,包括 PointE、Whisper、Jukebox 和 CLIP。可访问供研究人员的模型索引详细了解其研究论文中介绍的模型以及 InstructGPT 和 GPT3.5 等模型系列之间的差异。 智谱·AI 开源模型: 多模态模型方面,推出了具有视觉和语言双模态的模型,如 CogAgent18B、CogVLM17B、Visualglm6B 等。 详情可访问:【新基准】SuperCLUEAgent:首个 AI 智能体中文测评基准发布 www.CLUEbenchmarks.com/superclue_agent.html 。
2025-01-06
中外开源模型概览与分类
以下是关于中外开源模型的概览与分类: 国内方面: 国内模型在 Agent 核心基础能力上已较为接近或部分超过 GPT3.5 水平。 如 ChatGLM3Turbo 在任务分解、多文档问答和检索 API 能力上表现出色。 国内开源模型如 Baichuan213BChat 具备较强竞争力,在某些方面超过一些闭源模型。 国外方面: OpenAI 发布了开源模型,包括 PointE、Whisper、Jukebox 和 CLIP。可访问供研究人员的模型索引详细了解其研究论文中介绍的模型以及 InstructGPT 和 GPT3.5 等模型系列之间的差异。 智谱·AI 开源模型: 多模态模型方面,推出了具有视觉和语言双模态的模型,如 CogAgent18B、CogVLM17B、Visualglm6B 等。 详情可访问:【新基准】SuperCLUEAgent:首个 AI 智能体中文测评基准发布 www.CLUEbenchmarks.com/superclue_agent.html
2025-01-06
构建一个路由分类器AI,在工作流里面有什么好的设计方案,怎么能保证分类器进行分类准确呢
构建路由分类器 AI 的工作流设计方案如下: 1. 内容编排:在第四步中,将指令分为扩写、缩写、总结以及其他四类,设定最终的分类条件。分类器匹配到特定分支后执行相应操作,这种编排方式可过滤并避免处理不明确的指令,确保智能体准确响应用户指令。 2. 编写具体指令:为每个指令编写具体内容,如缩写、扩写和总结三个分支,创建包含变量(即用户初始输入的原始文本)的简单指令,用花括号引用变量,系统将值赋给变量并传递给模型推理形成提示词。 3. 最终输出:对各分支结果进行输出,输出内容相对简洁。 4. 测试流程:首先准备用于扩写、缩写和总结三项测试的文本素材,然后逐一进行各项测试,包括扩写测试、缩写测试、总结测试和错误处理测试,以验证每个分支能否顺利执行。 要保证分类器分类准确,可以从以下方面入手: 1. 清晰明确地设定分类条件,避免模糊和歧义。 2. 对输入的指令进行充分的预处理和规范化,使其符合分类器的预期格式。 3. 不断优化和调整分类器的参数和算法,以适应不同类型和复杂程度的指令。 4. 进行大量的测试和验证,收集错误案例并进行分析改进。
2024-12-29
Ai电影风格分类
AI 电影的风格分类众多,以下为您列举一些常见的风格: 墨水渲染 民族艺术 复古黑暗 国风 蒸汽朋克 电影摄影风格 概念艺术 剪辑 充满细节 哥特式黑暗 写实主义 黑白 统一创作 巴洛克时期 印象派 新艺术风格 洛可可 文艺复兴 野兽派 立体派 抽象表现主义 欧普艺术/光效应艺术 维多利亚时代 未来主义 极简主义 黑暗幻想风格 波普艺术 后印象派 表现主义 当代艺术 动画风格 卡通 视觉艺术 漫画书 蒸汽朋克 黑暗主题 微缩模型电影 能生成美漫封面的漫画画面 纯二次元风格人像 威廉森风格 包豪斯风格 安迪·沃霍尔风格 光色主义 魔幻现实主义 批判现实主义 点彩派 克劳德莫奈 桁缝艺术 局部解剖 彩墨纸本 涂鸦 伏尼契手稿 书页 真实的 3D 风格 复杂的 真实感 国家地理 超写实主义 电影般的 建筑素描 对称肖像 清晰的面部特征 室内设计 武器设计 次表面散射 游戏场景图 角色概念艺术
2024-12-23
能根据Excel自动帮我做数据分类吗
在 Excel 中,对于数据分类有一定的方法和限制。假设我们有一个关于电影评论的 Excel 表格,其中包含电影名称、评论、评分等列。传统的搜索原理是单词匹配,例如,如果用户想找到包含“酷”的评论,可使用 Excel 的“查找”功能输入“酷”进行查找,能直接导航到“环太平洋”的评论。 然而,这种方式存在局限性。比如语义搜索的缺失,如果用户想找到表达“精彩”或“激动人心”的评论,但没有明确使用这些词,传统搜索无法返回如“星球大战”的相关结果。而且对于非结构化数据,如图像、音频和视频等非文本内容,传统 Excel 工具无法进行有效的内容搜索。 不过,在一些简单场景中,Excel 还是能发挥作用的,比如文本数据管理,在个人和商业环境中管理文档、客户反馈、项目说明等,以及进行简单的数据筛选,快速查找包含特定关键词的行或记录,但更适用于小规模数据集。 总体来说,Excel 可以在一定程度上帮助进行数据分类,但对于复杂的语义理解和非结构化数据处理,可能无法完全满足需求。
2024-12-17
帮我写一个可以训练的分类器代码, python 代码,目的是将样本的扰动分为 0,0.001,0.003,0.005 四类,按照以下步骤写 第一步:导入需要的库 第二步:加载位于/public/xdw/ls/signaldefense/AS/perturbed_data.npy 的数据 第三步:获取数据样本的扰动值 第四步:判断扰动值的大小,比如扰动值为 0,则加一计数 第五步:打印出判断各类扰动值的正确率
以下是为您生成的 Python 代码示例,用于实现将样本的扰动分为 0、0.001、0.003、0.005 四类的分类器: ```python import numpy as np 第一步:导入需要的库 import numpy as np 第二步:加载数据 data = np.load 第三步:获取数据样本的扰动值 perturbation_values = data 假设扰动值在第二列 第四步:判断扰动值的大小并计数 count_0 = 0 count_0_001 = 0 count_0_003 = 0 count_0_005 = 0 for value in perturbation_values: if value == 0: count_0 += 1 elif value == 0.001: count_0_001 += 1 elif value == 0.003: count_0_003 += 1 elif value == 0.005: count_0_005 += 1 第五步:计算正确率 total_samples = len accuracy_0 = count_0 / total_samples accuracy_0_001 = count_0_001 / total_samples accuracy_0_003 = count_0_003 / total_samples accuracy_0_005 = count_0_005 / total_samples print print print print ```
2024-12-05