Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

中外开源模型概览与分类

Answer

以下是关于中外开源模型的概览与分类:

国内方面:

  • 国内模型在 Agent 核心基础能力上已较为接近或部分超过 GPT3.5 水平。
  • 如 ChatGLM3-Turbo 在任务分解、多文档问答和检索 API 能力上表现出色。
  • 国内开源模型如 Baichuan213B-Chat 具备较强竞争力,在某些方面超过一些闭源模型。

国外方面:

  • OpenAI 发布了开源模型,包括 Point-E、Whisper、Jukebox 和 CLIP。可访问供研究人员的模型索引详细了解其研究论文中介绍的模型以及 InstructGPT 和 GPT-3.5 等模型系列之间的差异。

智谱·AI 开源模型:

  • 多模态模型方面,推出了具有视觉和语言双模态的模型,如 CogAgent-18B、CogVLM-17B、Visualglm-6B 等。

详情可访问:【新基准】SuperCLUE-Agent:首个 AI 智能体中文测评基准发布 www.CLUEbenchmarks.com/superclue_agent.html 。

Content generated by AI large model, please carefully verify (powered by aily)

References

2023年度中文大模型基准测评报告.pdf

第4部分SuperCLUE2.0升级:行业及专项测评基准测评结果AI Agent智能体正在最大程度释放了LLM潜能,逐渐成为了通向AGI的技术共识。AI Agent是一个能够自主理解、规划决策和执行复杂任务的智能体。现有关于Agent能力的测评,主要是在英文场景或任务的测评。目前还没有一个在中文任务和场景上针对中文大模型的全面测评。SuperCLUE-Agent是一个聚焦于Agent能力的多维度基准测试,包括3大核心能力、10大基础任务,可以用于评估大语言模型在核心Agent能力上的表现,包括工具使用、任务规划和长短期记忆能力。国内外代表性模型SuperCLUE-Agent十大能力上的表现我们选取了国内外有代表性的16个闭源/开源的模型进行测评。通过测评结果发现,在Agent核心基础能力上,国内模型已经较为接近或部分超过GPT3.5水平。GPT-4在SuperCLUE-Agent的10个任务中有5个任务表现最佳,这表明GPT4在智能体方面具有非常大的优势,但值得肯定的是,国内有部分模型在某些任务上表现也可圈可点,如ChatGLM3-Turbo在任务分解、多文档问答和检索API能力上表现惊艳。另外,国内开源模型如Baichuan213B-Chat已经具备比较强的竞争力,某些方面超过了一些闭源模型。详情可访问:【新基准】SuperCLUE-Agent:首个AI智能体中文测评基准发布www.CLUEbenchmarks.com/superclue_agent.html专项基准:SuperCLUE-Safety中文大模型多轮对抗安全基准

模型(Models)

我们还发布了开源模型,包括[Point-E](https://github.com/openai/point-e),[Whisper](https://github.com/openai/whisper),[Jukebox](https://github.com/openai/jukebox)和[CLIP。](https://github.com/openai/CLIP)访问[供研究人员的模型索引](https://platform.openai.com/docs/model-index-for-researchers)详细了解我们的研究论文中介绍了哪些模型以及InstructGPT和GPT-3.5等模型系列之间的差异。

智谱·AI 开源模型列表

,我们推出了具有视觉和语言双模态的模型。|模型|介绍|代码链接|模型下载||-|-|-|-||CogAgent-18B|基于CogVLM-17B改进的开源视觉语言模型。CogAgent-18B拥有110亿视觉参数和70亿语言参数,支持1120*1120分辨率的图像理解,在CogVLM功能的基础上,具备GUI图像的Agent能力。|[CogVLM&CogAgent](https://github.com/THUDM/CogVLM)|[Huggingface](https://huggingface.co/THUDM/CogVLM)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/cogagent-chat/summary)|[Swanhub](https://swanhub.co/ZhipuAI/cogagent-chat-hf)|始智社区||CogVLM-17B|强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM可以在不牺牲任何NLP任务性能的情况下,实现视觉语言特征的深度融合。我们训练的CogVLM-17B是目前多模态权威学术榜单上综合成绩第一的模型,在14个数据集上取得了state-of-the-art或者第二名的成绩。||[Huggingface](https://huggingface.co/THUDM/cogvlm-chat-hf)|[魔搭社区](https://modelscope.cn/models/AI-ModelScope/cogvlm-chat/summary)||Visualglm-6B|VisualGLM-6B是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于[ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B),具有62亿参数;图像部分通过训练[BLIP2-Qformer](https://arxiv.org/abs/2301.12597)构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。|[VisuaGLM](https://github.com/THUDM/VisualGLM-6B)|[Huggingface](https://huggingface.co/THUDM/visualglm-6b)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/visualglm-6b/summary)|

Others are asking
中外开源模型概览与分类
以下是关于中外开源模型的概览与分类: 国内方面: 国内模型在 Agent 核心基础能力上已较为接近或部分超过 GPT3.5 水平。 如 ChatGLM3Turbo 在任务分解、多文档问答和检索 API 能力上表现出色。 国内开源模型如 Baichuan213BChat 具备较强竞争力,在某些方面超过一些闭源模型。 国外方面: OpenAI 发布了开源模型,包括 PointE、Whisper、Jukebox 和 CLIP。可访问供研究人员的模型索引详细了解其研究论文中介绍的模型以及 InstructGPT 和 GPT3.5 等模型系列之间的差异。 智谱·AI 开源模型: 多模态模型方面,推出了具有视觉和语言双模态的模型,如 CogAgent18B、CogVLM17B、Visualglm6B 等。 详情可访问:【新基准】SuperCLUEAgent:首个 AI 智能体中文测评基准发布 www.CLUEbenchmarks.com/superclue_agent.html
2025-01-06
帮我写一篇有关aigc的行业分析,标题为《AIGC行业洞察与概览》,其中框架内容包含以下部分,整体3万字 - 概念导入(AI、AIGC) - AI与人的区别 - AI衍生发展历程(诞生、发展、现状-中外各平台产品及语言模型介绍) - AI在社会各领域的应用实践 - AI技术的底层逻辑概览 - AI的弊端以及风险
以下是为您生成的《AIGC 行业洞察与概览》的部分内容: 一、概念导入 (一)AI 人工智能(Artificial Intelligence,简称 AI)是一种目标,旨在让机器展现智慧。 (二)AIGC GenAI(即生成式 AI)是一种能够从已有数据中学习并生成新的数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC(全称 AIGenerated Content)。AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 二、AI 与人的区别 三、AI 衍生发展历程 (一)诞生 (二)发展 (三)现状 1. 中外各平台产品及语言模型介绍 (1)语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。 (2)图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,代表项目有 Stable Diffusion 和 StyleGAN 2。 (3)音视频生成利用扩散模型、GANs 和 Video Diffusion 等,代表项目有 Sora 和 WaveNet。 四、AI 在社会各领域的应用实践 AIGC 技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 五、AI 技术的底层逻辑概览 (一)机器学习:一种让机器自动从资料中找到公式的手段。 (二)深度学习:一种更厉害的手段,类神经网络,具有非常大量参数的函数。 (三)大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称 LLMs。 六、AI 的弊端以及风险 作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 由于篇幅限制,目前仅能为您提供约 2000 字的内容,距离 3 万字还有较大差距。后续还需要进一步丰富和完善各个部分的细节及案例分析等。
2024-09-03
我是一个有十年经验的职场人,精通商业知识,我的语言风格专业又有趣。请根据麦肯锡咨询公司过去三年的资料与数据,帮我完成一份麦肯锡咨询公司的分析报告。这份报告应该包括概览、业绩、市场、未来等模块。
很高兴你想要我帮助你完成麦肯锡咨询公司的分析报告。不过,由于我无法访问互联网来获取麦肯锡咨询公司过去三年的具体资料与数据,我将提供一个分析报告的大纲和框架,你可以根据这个框架来填充具体的数据和分析。 麦肯锡咨询公司分析报告 概览 公司简介:简要介绍麦肯锡的历史、使命、价值观和核心业务。 服务范围:概述麦肯锡提供的咨询服务类型,例如战略、运营、组织、数字化转型等。 全球布局:描述麦肯锡在全球的分支机构和重要市场。 业绩 收入增长:分析过去三年的收入增长趋势。 利润情况:评估利润率和成本控制情况。 客户增长:客户数量和质量的变化。 项目多样性:项目类型的多样性和创新性。 市场 市场地位:麦肯锡在全球咨询市场的排名和影响力。 竞争分析:主要竞争对手的比较分析。 行业专长:麦肯锡在特定行业的专长和市场表现。 客户反馈:客户满意度和忠诚度的调查结果。 未来 发展趋势:分析咨询行业的未来趋势,麦肯锡如何适应这些变化。 技术投资:麦肯锡在数字化和技术创新方面的投资。 人才战略:人才招聘、培训和留存策略。 全球扩张:未来在全球市场的扩张计划和战略。 结论 优势总结:总结麦肯锡的主要优势和核心竞争力。 挑战识别:识别当前面临的主要挑战和潜在风险。 发展建议:基于分析结果提出的发展建议。 附录 数据来源:列出所有数据和信息的来源。 方法论:描述分析报告的研究方法和工具。 参考资料 列出参考的书籍、文章、研究报告等。 请根据实际获取的数据和信息来填充和调整上述框架。如果你能够提供具体的数据或者需要进一步的帮助,请随时告知。
2024-07-11
开源模型与闭源模型调用
以下是关于开源模型与闭源模型调用的相关信息: 1. 通义千问自 2023 年 8 月起密集推出 Qwen、Qwen1.5、Qwen2 三代开源模型,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已上线中国大语言模型评测竞技场 Compass Arena,所有人都可登录体验其性能或进行对比测评,测评地址为。Compass Arena 集齐了国内主流的 20 多款大模型,用户可在平台选择大模型的两两“对战”。 2. 部分声称性能卓越的中国大模型被揭露为“套壳”产品,如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但坚称发布的模型从零开始训练并进行了大量原创优化和突破。此外,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API,并使用 ChatGPT 的输出数据来训练自己的模型,此行为触犯了 OpenAI 使用协议中禁止的条款。 3. 在 LLM 应用程序中,OpenAI 已成为语言模型领域领导者,开发者通常使用 OpenAI API 启动新的 LLM 应用,如 gpt4 或 gpt432k 模型。项目投入生产并规模化时,有更多选择,如切换到 gpt3.5turbo,其比 GPT4 便宜约 50 倍且速度更快;与其他专有供应商如 Anthropic 的 Claude 模型进行实验;将一些请求分流到开源模型,这通常与微调开源基础模型结合更有意义。开源模型有多种推理选项,包括 Hugging Face 和 Replicate 的简单 API 接口、主要云提供商的原始计算资源等。
2025-01-06
国内开源AI绘图软件,适合新手的推荐
以下是为您推荐的适合新手的国内开源 AI 绘图软件: 1. Midjourney:是目前较容易上手的工具,对于完全不懂 AI 绘图、想尝试的新手来说是不错的入门选择。现阶段的 AI 能辅助进行设计,视觉效果相当吸睛。在 Midjourney 中生成 UI 设计图,如果没想好输入哪些指令,可以先用指令模板:「ui design forapplication,mobile app,iPhone,iOS,Apple Design Award,screenshot,single screen,high resolution,dribbble」,把里面的“类型”替换成您想设计的产品的关键词描述(英文)。 2. Creately:在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。具有智能绘图功能,可自动连接和排列图形,有丰富的模板库和预定义形状,实时协作功能适合团队使用。官网:https://creately.com/ 3. Whimsical:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能,适合团队工作。官网:https://whimsical.com/ 4. Miro:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。具有无缝协作,支持远程团队实时编辑,丰富的图表模板和工具,支持与其他项目管理工具(如 Jira、Trello)集成。官网:https://miro.com/ 5. Lucidchart:强大的在线图表制作工具,集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。具有拖放界面,易于使用,支持团队协作和实时编辑,丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ 6. Microsoft Visio:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。集成 Office 365,方便与其他 Office 应用程序协同工作,有丰富的图表类型和模板,支持自动化和数据驱动的图表更新。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 7. Diagrams.net:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。支持本地和云存储(如 Google Drive、Dropbox),有多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:https://www.diagrams.net/
2025-01-06
AI开源软件
以下是为您整理的关于 AI 开源软件的相关信息: 10 月 AI 行业大事记中的开源软件部分: 智谱:开源文生图模型 CogView3Plus3B 上海交大:开源 F5TTS 英伟达:开源 Llama3.1Nemotron70BInstruct TeleAI:正式开源 TeleChat2115B OpenAI:开源多智能体协作框架 Swarm 100 个 AI 应用中涉及的开源软件未在提供的内容中有明确提及。 如果您想了解更多关于特定 AI 开源软件的详细信息或有其他需求,请进一步向我提问。
2025-01-06
AI开源软件
以下是为您整理的关于 AI 开源软件的相关信息: 10 月 AI 行业大事记中的开源软件: 智谱:开源文生图模型 CogView3Plus3B 上海交大:开源 F5TTS 英伟达:开源 Llama3.1Nemotron70BInstruct TeleAI:正式开源 TeleChat2115B OpenAI:开源多智能体协作框架 Swarm 100 个 AI 应用中的开源软件相关信息暂未提及。 希望以上内容对您有所帮助!如果您需要更详细准确的信息,请进一步明确您的需求。
2025-01-06
开源模型与闭源模型调用
开源模型与闭源模型调用相关信息如下: 通义千问自 2023 年 8 月起密集推出 Qwen、Qwen1.5、Qwen2 三代开源模型,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已上线中国大语言模型评测竞技场 Compass Arena,所有人都可登录体验其性能或进行对比测评,测评地址为:https://opencompass.org.cn/arena 。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 部分声称性能卓越的中国大模型被揭露为“套壳”产品,如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构。此外,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API,并使用 ChatGPT 的输出数据来训练自己的模型。 在 LLM 应用程序中,开发者通常使用 OpenAI API 启动新的 LLM 应用,如 gpt4 或 gpt432k 模型。当项目投入生产并规模化时,常见的选择包括切换到更便宜且速度更快的 gpt3.5turbo,与其他专有供应商(如 Anthropic 的 Claude 模型)进行实验,将一些请求分流到开源模型等。开源模型有多种推理选项,包括 Hugging Face 和 Replicate 的简单 API 接口、主要云提供商的原始计算资源等。
2025-01-06
是不是可以跟任何大模型进行对话
一般来说,可以跟很多大模型进行对话。以下是一些常见的方式: 1. 对于 Llama3 大模型: 下载大模型主要是为了与之对话,或者称为使用其进行推理。 有两种对话方式,可使用 API 或部署简单界面。面向小白,这里主要介绍部署界面的方式。 例如,在 /root/autodltmp 路径下新建 chatBot.py 文件并输入相关内容,然后启动 Webdemo 服务,按照指示映射端口,在浏览器中打开相应链接即可看到聊天界面。 2. 对于 Llama 大模型: 首先编译,为利用 Metal 的 GPU 可用特定命令编译。 去指定网址下载模型。 llama.cpp 还提供了 WebUI 供用户使用,启动 server 后默认监听 8080 端口,打开浏览器就可以对话。 3. 对于通过 Open WebUI 使用大模型: 访问指定网址,使用邮箱注册账号。 登陆成功后,Open WebUI 一般有聊天对话和 RAG 能力(让模型根据文档内容回答问题)两种使用方式。如果要求不高,已实现通过 Web UI 与本地大模型对话的功能。 需要注意的是,不同大模型的访问速度和回答效果可能存在差异,例如 ChatGPT 访问速度快是因为其服务器配置高,回答效果好是因为训练参数多、数据更优以及训练算法更好。
2025-01-07
我想在dify里按照一个reranker模型,推荐哪个
在 Dify 中安装 reranker 模型,推荐使用中转服务商。Dify 的部署版本中,模型需自行配置,官方和中转的都支持,但中转服务商从性价比角度更优,充点小钱就能用上各种模型,价格通常有较大折扣,20 刀普通用户能用很久,还能在不同地方使用。若没有合适的中转服务商,可使用我自用的,点击原文即可。模型设置方面,在 Dify 右上角点击设置模型供应商,填入中转服务商提供的信息(一般包括 API base 或 Base URL 以及 key)并保存。若保存成功,回到主页面创建一个 Agent 测试,正常则大功告成。比如我填的 API base 是‘https://one.glbai.com’。
2025-01-07
文生图有哪些大模型
以下是一些常见的文生图大模型: 1. SD(StableDiffusion):如 majicmixRealistic_v6.safetensors 模型,可通过设置相关提示词、参数等生成图像。 2. 快手 Kolors:这是一个基于潜在扩散的大规模文本生成图像模型,在视觉质量、复杂语义准确性以及中英文字符的文本渲染方面有显著优势,支持中文和英文输入。其相关资源包括工作流与模型地址、文档说明、项目地址等。 开源代码:https://github.com/KwaiKolors/Kolors 模型权重:https://huggingface.co/KwaiKolors/Kolors 官方页面:https://kwaikolors.github.io/ 企业页面:https://kolors.kuaishou.com/
2025-01-07
文生图模型打分的排行榜
以下是关于文生图模型打分的排行榜相关信息: SuperCLUEImage 测评基准首次公布,DALLE 3 以 76.94 分高居榜首,显示其在图像生成质量、多样性和文本一致性方面的卓越表现。百度文心一格和 vivo 的 BlueLMArt 位列国内前列,但与国际领先模型仍有差距。 在包含人工评估、机器评估的全面评测中,Kolors 具有非常有竞争力的表现,达到业界领先水平。构建了包含 14 种垂类、12 个挑战项、总数量为一千多个 prompt 的文生图评估集 KolorsPrompts。 人工评测方面,邀请了 50 个具有图像领域知识的专业评估人员对不同模型的生成结果进行对比评估,衡量维度为画面质量、图文相关性、整体满意度三个方面。Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体平均分如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。
2025-01-07
目前主流的AI大模型有哪些
目前主流的 AI 大模型主要有以下几种: 1. OpenAI 系列:包括 GPT3.5 和 GPT4 等。GPT3.5 在 11 月启动了当前的 AI 热潮,GPT4 功能更强大。ChatGPT 也属于 OpenAI 系列。 2. 微软 Bing:使用 GPT4 和 GPT3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,能创建和查看图像,还能在网页浏览器中阅读文档,并连接到互联网。 3. 谷歌 Bard:由各种基础模型驱动,最近是 PaLM 2 模型。 4. Anthropic Claude 2:其特点是有非常大的上下文窗口,不太可能恶意行事。 此外,大模型的架构也有所不同,如 encoderonly 模型(代表模型是 BERT)、encoderdecoder 模型(代表是 google 的 T5)、decoderonly 模型(适用于自然语言生成任务,如故事写作和博客生成,众多 AI 助手包括 ChatGPT 都属于此类)。大模型的“大”体现在预训练数据量大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练)和参数多(如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数)。
2025-01-07
用于训练销售助手类型业务的私有模型
以下是关于训练销售助手类型业务私有模型的相关信息: 1. 提示词方面:设计了一套模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣且有效的销售助手,吸引顾客注意。拟人化提示词母体可通过关注作者微信领取。 2. 增加私有知识方面:通过前面步骤拥有可与客户对话的 AI 助手后,若想让其像公司员工一样精准专业回答商品相关问题,需为大模型应用配置知识库。例如在售卖智能手机的公司,网站上有很多相关信息,不同机型的详细配置清单可参考相关文档。
2025-01-07