Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

flux-dev提示词

Answer

以下是关于 ComfyUI Flux-dev 提示词的相关信息:

  • Redux 模型:是轻量级模型,可与 Flux.1[Dev]和 Flux.1[Schnell]配合使用,基于 1 个输入图像生成图像变体,无需提示,适合快速生成特定样式的图像。若要往一张图上融合,提示词最好描述图片的背景颜色。将 Redux 模型下载到 comfyui/models/style_models,下载 sigclip_patch14-384.safetensors 到 ComfyUI/models/clip_vision。重绘节点可使用 ComfyUI-InpaintEasy,链接为 https://github.com/CY-CHENYUE/ComfyUI-InpaintEasy。
  • 低显存运行工作流:目的是让 FLUX 模型能在较低显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成以提高效率,采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存使用,最后使用 SD 放大提升图片质量。工作流流程包括初始图像生成(Flux)和图像放大和细化(SDXL),各阶段涉及不同的模型加载、处理和预览步骤。
  • 模型的安装部署:FLUX.1[dev]、FLUX.1[dev fp8]、FLUX.1[schnell]中建议选择 dev 版本,显卡可以的用 fp16,显卡不够用的选 fp8,模型下载后放入 ComfyUI/models/unet/文件夹。若爆显存,可在“UNET 加载器”节点中的 weight_dtype 设置为 fp8 降低显存使用量,但可能稍降质量。t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/文件夹,可使用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率,超过 32GB 内存建议使用 fp16。Vae 下载后放入 ComfyUI/models/vae 文件夹。T5(/t5xxl_fp16.safetensors)的 clip 原本有输入输出,可能导致提示词被吞,短提示效果差,训练 flux 或 sd3 时应尽量用长提示词或自然语言。
Content generated by AI large model, please carefully verify (powered by aily)

References

ComfyUI Flux redux

Redux模型是一个轻量级模型,可与Flux.1[Dev]和Flux.1[Schnell]配合使用,以基于1个输入图像生成图像变体,无需提示。它非常适合快速生成特定样式的图像。[heading3]移除背景[heading3]关于提示词[content]这里需要注意的是,如果要往一张图上融合,提示词最好描述下图片的背景颜色。[heading3]Redux模型位置[content]将Redux模型下载到comfyui/models/style_models下载sigclip_patch14-384.safetensors到ComfyUI/models/clip_vision[heading3]重绘节点[content]ComfyUI-InpaintEasyhttps://github.com/CY-CHENYUE/ComfyUI-InpaintEasy[heading3]工作流

ComfyUI FLUX低显存运行

这个方法的目的是让FLUX模型能在较低的显存情况下也能运行.分阶段处理的思路:1.使用Flux模型进行初始生成,在较低分辨率下工作以提高效率2.采用两阶段处理:先用Flux生成,后用SDXL放大,效控制显存的使用3.使用SD放大提升图片质量工作流的流程:初始图像生成(Flux):UNETLoader:加载flux1-dev.sft模型DualCLIPLoader:加载t5xxl和clip_l模型VAELoader:加载flux-ae.sftCLIPTextEncode:处理输入提示词BasicGuider和RandomNoise:生成初始噪声和引导SamplerCustomAdvanced:使用Flux模型生成初始图像VAEDecode:解码生成的潜在图像初始图像预览:PreviewImage:显示Flux生成的初始图像图像放大和细化(SDXL):CheckpointLoaderSimple:加载SDXL模型(fenrisxl_SDXLLightning.safetensors)UpscaleModelLoader:加载RealESRGAN_x4.pth用于放大VAELoader:加载sdxl_vae.safetensorsImageSharpen:对初始图像进行锐化处理UltimateSDUpscale:使用SDXL模型和放大模型进行最终的放大和细化最终图像预览:PreviewImage:显示最终放大和细化后的图像

ComfyUI FLUX

FLUX.1[dev]FLUX.1[dev fp8]FLUX.1[schnell],选一个.建议选择dev版本的,显卡可以的用fp16,显卡不够用的选fp8.模型下载后,放入,这个文件应该放在你的:ComfyUI/models/unet/文件夹中。如果爆显存了,“UNET加载器”节点中的weight_dtype可以控制模型中权重使用的数据类型,设置为fp8,这将使显存使用量降低一半,但可能会稍微降低质量.默认下的weight_type,显存使用比较大.[heading4]clip[content]t5xxl_fp16.safetensors和clip_l.safetensors,放在ComfyUI/models/clip/文件夹里面.https://huggingface.co/comfyanonymous/flux_text_encoders/tree/main可以使用t5xxl_fp8_e4m3fn.safetensors来降低内存使用率,但是如果你有超过32GB内存,建议使用fp16[heading4]Vae[content]下载后,放入ComfyUI/models/vae文件夹https://huggingface.co/black-forest-labs/FLUX.1-schnell/tree/main[heading3][heading3]T5(/t5xxl_fp16.safetensors)的这个clip,[content]原本是有一个输入输出的。就是有一半是应该空着的。会导致提示词被吞的情况,就是可能会有一半的提示词被吞掉了。所以短提示的效果会比较差。我们在训练flux或者sd3时候,应该尽量的去用长提示词或者自然语言。不要用短提示词。因为T5自带了50%的删标。

Others are asking
flux1-depth-dev模型存放路径
flux1depthdev 模型的存放路径如下: 1. 下载 flux1depthdev 模型放到 ComfyUI/models/diffusion_models/文件夹中。 夸克网盘:链接:https://pan.quark.cn/s/571d174ec17f 百度网盘:见前文 2. 也可以将 depth lora 模型存放到 ComfyUI/models/loras 文件夹中。 depth lora 模型:https://huggingface.co/blackforestlabs/FLUX.1Depthdevlora 3. 百度网盘中也有相关模型: 链接:https://pan.baidu.com/s/10BmYtY3sU1VQzwUy2gpNlw?pwd=qflr 提取码:qflr
2025-02-05
自定义采样器(高级) Expected all tensors to be on the same device,but found at least two devices,cuda:0 and cpu!(when checking argument for argument mat2 in method wrapper_CUDA_mm)
以下是关于“自定义采样器(高级)”中“Expected all tensors to be on the same device,but found at least two devices,cuda:0 and cpu!(when checking argument for argument mat2 in method wrapper\_CUDA\_mm)”错误的解决办法: 错误原因:Expected all tensors to be on the same device,but found at least two devices,cuda:0 and cpu! 对应插件地址:https://github.com/sipie800/ComfyUIPuLIDFluxEnhanced 资料链接: 百度网盘:通过网盘分享的文件:ComfyUI_PuLID_Flux_ll 链接:https://pan.baidu.com/s/1dMLAb4s0vroO9Zk6ecKb7Q?pwd=cycy 提取码:cycy 来自百度网盘超级会员 v5 的分享 说明文档:https://www.xiaobot.net/post/b98d55699a754b9baac242a3e285be94 由于 AI 技术更新迭代,请以文档更新为准 更多内容收录在:https://xiaobot.net/p/GoToComfyUI 网盘:https://pan.quark.cn/s/129886bbcc61 相关链接: ComfyUI_PuLID_Flux_ll :https://github.com/lldacing/ComfyUI_PuLID_Flux_ll?tab=readmeovfile guozinan/PuLID 模型:https://huggingface.co/guozinan/PuLID/tree/main
2025-02-03
v0.dev还有其他吗
以下是为您提供的网页原型图生成工具相关信息: 1. 即时设计:https://js.design/ ,是一款可在线使用的「专业 UI 设计工具」,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix: ,Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ ,使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 此外,还有一些 AIGC 相关的动态: 1. Midjourney 憋了半年的大招 V6 模型将在下周发布,上周六开始了社区评价活动:https://www.midjourney.com/rankv6 2. Perplexity 上线了图片生成功能,搜索结果完成之后 Pro 用户可以点击右边按钮生成图片:https://www.perplexity.ai/ 3. Stability AI 推出会员服务,基础会员 20 美元,非会员无法商用他们公司的模型了。现在需要会员才能商用的模型包括 SDXL Turbo、SVD、Stable LM Zephyr 3B:https://stability.ai/membership 4. 谷歌 Deepmind 宣布了他们最先进的图像生成模型 Imagen 2:https://x.com/op7418/status/1734962114513797468?s=20 5. Visual Electric 发布了图像合成和风格创建功能:https://x.com/op7418/status/1734988753125658695?s=20 6. Chat GPT 重新开启 GPT plus 订阅:https://x.com/sama/status/1734984269586457078?s=20 7. Gemini Pro API 已经向企业和开发者开放:https://blog.google/technology/ai/geminiapideveloperscloud 8. 截图生成前端代码的 v0.dev 已经向所有用户开放:https://v0.dev/ 9. Krea 上周向所有人开放,不需要邀请了:https://x.com/krea_ai/status/1734866368489722035?s=20 10. Theverge 报道字节使用 Open AI 训练模型被发现,导致无法获得 OpenAI 相关内容的使用权限:https://www.theverge.com/2023/12/15/24003151/bytedancechinaopenaimicrosoftcompetitorllm 11. Open AI 官方推出了提示工程指南:https://platform.openai.com/docs/guides/promptengineering 在 12 月 14 日的宝玉日报中提到: 1. OpenAI o1:复杂算法与架构设计的首选,推理能力强,适合作为架构师或算法顾问。 2. Claude 3.5/Cursor:快速生成代码与网页设计,Claude 擅长长上下文任务,Cursor 适合上下文控制较好的 IDE 开发。 3. v0.dev:网页设计利器,支持设计稿生成网页。 4. Gemini:长上下文支持(2M Tokens),适合代码反编译与混淆代码分析。 5. 组合搭配:复杂任务用 o1 设计,Claude 生成代码,其他工具辅助实现网页与单元测试,效率翻倍。 详细分享博客:
2025-01-22
我想用AI完成一个编程项目,帮我从零到一完成一个个人介绍网站,我现在使用vo.dev完成了一个网站,但是不可以供我使用我上传github后再vercel运行发现会出现404请问我该怎么办
很抱歉,暂时没有关于您所描述问题的相关内容。出现 404 错误通常是由于页面未找到导致的。您可以先检查一下以下几个方面: 1. 确认您在 GitHub 上的代码上传是否完整且正确,包括相关的配置文件和依赖项。 2. 检查 Vercel 的部署设置,确保配置正确,例如域名绑定、环境变量等。 3. 查看服务器的日志,以获取更详细的错误信息,从而确定问题的具体原因。 希望这些建议能对您有所帮助,如果问题仍未解决,建议您进一步查阅相关的技术文档或向技术社区寻求帮助。
2024-12-19
flux1-depth-dev模型存放路径
flux1depthdev 模型的存放路径如下: 1. 下载 flux1depthdev 模型放到 ComfyUI/models/diffusion_models/文件夹中。 夸克网盘:链接:https://pan.quark.cn/s/571d174ec17f 百度网盘:见前文 2. depth lora 模型:https://huggingface.co/blackforestlabs/FLUX.1Depthdevlora ,放到:comfyUI\\models\\loras 。 3. 百度网盘分享的 flux1depthdevlora.safetensors : 链接:https://pan.baidu.com/s/10BmYtY3sU1VQzwUy2gpNlw?pwd=qflr 提取码:qflr
2024-12-17
NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37. If you want to use th
您好,出现“NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37.”这种情况,意味着您所使用的 NVIDIA 显卡的 CUDA 计算能力(sm_120)与当前安装的 PyTorch 版本不兼容。当前安装的 PyTorch 支持的 CUDA 计算能力为 sm_37 至 sm_90 以及 compute_37 。您可能需要重新安装与您显卡 CUDA 计算能力相匹配的 PyTorch 版本,或者升级您的显卡驱动程序来解决此兼容性问题。
2024-11-30
flux inpainting 是怎么基于diffusersion train的inpainting
Flux inpainting 基于 diffusion train 的 inpainting 通常涉及以下方面: 训练扩散模型在特定的表示上,能够在降低复杂度和保留细节之间达到最优平衡点,显著提高视觉保真度。在模型架构中引入交叉注意力层,使其成为强大且灵活的生成器,能够处理诸如文本和边界框等一般条件输入,实现基于高分辨率卷积的合成。 关于 Midjourney 的训练 prompt 方面: Midjourney 会定期发布新的模型版本以提高效率、连贯性和质量。最新模型是默认的,但也可以通过 version 或 v 参数或使用 /settings 命令选择其他模型版本。不同模型在不同类型的图像上表现出色。Midjourney V5 模型是最新且最先进的模型,于 2023 年 3 月 15 日发布。使用该模型可在 prompt 末尾添加 v 5 参数,或通过 /settings 命令选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言 prompt,分辨率更高,并支持诸如 tile 等高级功能。V5 基础模型具有更广泛的风格范围、对 prompt 响应更灵敏、图像质量更高(分辨率提高 2 倍)、动态范围改进、图像细节更丰富且更准确、文本干扰更少等新特点,还支持 tile 参数实现无缝平铺(实验性)、支持大于 2:1 的 ar 宽高比(实验性)、支持 iw 权衡图像 prompt 与文本 prompt 以及特定的风格和 prompt 方式。
2025-01-22
FLUX模型训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 1. 模型准备: 下载所需模型,包括 t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时模型存放位置不限,但要知晓路径;训练时建议使用 flux1dev.safetensors 和 t5xxl_fp16.safetensors 版本。 2. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 3. 数据集准备: 建议使用自然语言,与之前 SDXL 的训练类似。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 。 若未准备数据集,此路径中有试验数据集可直接使用。 4. 运行训练:约 1 2 小时即可完成训练。 5. 验证和 lora 跑图:若有 comfyUI 基础,在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点,自行选择 Lora 并调节参数。 6. 修改脚本路径和参数: 若显卡为 16G,右键 16G 的 train_flux_16GLora 文件;若显卡为 24G 或更高,右键 24G 的 train_flux_24GLora 文件。 用代码编辑器打开,理论上只需修改红色部分,包括底模路径、VAE 路径、数据集路径、clip 路径和 T5xxl 路径。注意路径格式,避免错误。蓝色部分为备注名称,可改可不改。建议经验丰富后再修改其他深入参数,并做好备份管理。
2025-01-20
flux提示词示例
以下是一些关于 flux 提示词的示例: 在不同主题方面,如文本概括(https://www.promptingguide.ai/zh/introduction/examples%E6%96%87%E6%9C%AC%E6%A6%82%E6%8B%AC)、信息提取(https://www.promptingguide.ai/zh/introduction/examples%E4%BF%A1%E6%81%AF%E6%8F%90%E5%8F%96)、问答(https://www.promptingguide.ai/zh/introduction/examples%E9%97%AE%E7%AD%94)、文本分类(https://www.promptingguide.ai/zh/introduction/examples%E6%96%87%E6%9C%AC%E5%88%86%E7%B1%BB)、对话(https://www.promptingguide.ai/zh/introduction/examples%E5%AF%B9%E8%AF%9D)、代码生成(https://www.promptingguide.ai/zh/introduction/examples%E4%BB%A3%E7%A0%81%E7%94%9F%E6%88%90)、推理(https://www.promptingguide.ai/zh/introduction/examples%E6%8E%A8%E7%90%86),通过示例介绍说明如何使用精细的提示词来执行不同类型的任务。 在 Claude2 中文精读中,构建提示词时可以添加示例(可选)。您可以通过在提示词中加入一些示例,让 Claude 更好地了解如何正确执行任务。提供示例的方式可以是以先前对话的形式,用不同的对话分隔符,例如用“我”代替“Human:”,用“你”代替“Assistant:”;也可以直接提供例子。决定哪种方法更有效取决于具体任务,建议尝试两种方法以确定更好的结果。 在市场营销类中,如赛博佛祖(Kyle)的示例,其角色设定为熟悉佛教经典、境界很高的佛学大师,能为对人生感到迷茫的人指引方向。具体设定包括引用相关佛教经典语录并解释含义,提供有效建议等,并给出了详细的约束条件和链接地址()。
2025-01-20
Flux 的lora模型训练教程
以下是 Flux 的 Lora 模型训练教程: 1. 模型准备: 下载所需模型,如 t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意: 不使用时模型存放位置随意,只要知晓路径,后续会引用。 训练建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 2. 下载训练脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 3. 训练步骤: 进入厚德云模型训练数据集:https://portal.houdeyun.cn/sd/dataset 步骤一·创建数据集: 在数据集一栏中,点击右上角创建数据集。 输入数据集名称。 可以提前将图片和标签打包成 zip 上传,zip 文件里图片名称与标签文件应当匹配,如图片名"1.png",对应的达标文件就叫"1.txt"。也可以一张一张单独上传照片。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 步骤二·Lora 训练: 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 触发词可有可无,取决于数据集是否有触发词。 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 然后等待训练,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 4. 低配置方案: 开源社区对低配置方案进行了优化,NF4 来自 controlnet 的作者,GGUF 则包含多个版本可以使用。 NF4 模型下载:https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors ,放置在 ComfyUI/models/checkpoint/中(不像其他 Flux 模型那样放置在 UNET 中),NF4 配套节点插件:git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git GGUF 模型下载:Flux GGUF 模型:https://huggingface.co/city96/FLUX.1devgguf/tree/main ,GGUF 配套节点插件:GGUF 节点包:https://github.com/city96/ComfyUIGGUF 。 值得一提的是在最新版本的 ComfyUI 中 GGUF 的节点插件可以在 Manager 管理器中搜到下载安装,NF4 的配套节点插件则搜不到。 注意使用精度优化的低配模型的话,工作流和原版是不一样的。此处没有专门列举。 自己改的话就是把上面官方的 fp8 的工作流,只需把底模的节点换成 NF4 的或者 GUFF 的即可。 相关生态发展很快,有 Lora、Controlnet、IPadpter 相关生态建设非常速度,以及字节最近发布的 Flux Hyper lora 是为了 8 步快速生图。
2025-01-19
FLUX低显存怎么安装
如果您的显存较低,安装 FLUX 可以参考以下步骤: 1. NF4 模型下载: 链接:https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 放置位置:ComfyUI/models/checkpoint/中(不像其他 Flux 模型那样放置在 UNET 中) NF4 配套节点插件:git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git 2. GGUF 模型下载: 链接:Flux GGUF 模型:https://huggingface.co/city96/FLUX.1devgguf/tree/main GGUF 配套节点插件:GGUF 节点包:https://github.com/city96/ComfyUIGGUF 值得一提的是在最新版本的 ComfyUI 中,GGUF 的节点插件可以在 Manager 管理器中搜到下载安装,NF4 的配套节点插件则搜不到。 3. 对于 8G 以下显存的方案: flux1devbnbnf4.safetensors 放入 ComfyUI\\models\\checkpoints 文件夹内。 ComfyUI_c_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4 注:如果报错,请更新 BitsandBytes 库。下载放入解压后 ComfyUI\\custom_node 文件夹内,重启 ComfyUI,如果之前没更新,更新后再重启。 相关资源链接: BitsandBytes Guidelines and Flux:https://github.com/lllyasviel/stablediffusionwebuiforge/discussions/981 ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4 flux1devbnbnf4.safetensors:https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 注意使用精度优化的低配模型的话,工作流和原版是不一样的。自己改的话就是把上面官方的这个 fp8 的工作流,只需把底模的节点换成 NF4 的或者 GUFF 的即可。相关生态发展很快,有 Lora、Controlnet、IPadpter 相关生态建设非常速度,以及字节最近发布的 Flux Hyper lora 是为了 8 步快速生图。
2025-01-09
什么是提示词工程
提示词工程是指在与人工智能模型进行交互时,负责设计和优化提示的工作。 具体来说,提示词工程师的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标评估提示的有效性,如模型的准确率、流畅度和相关性等。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 例如,在生成一篇关于夏季旅游的文章时,有效的提示词可以是“写一篇关于夏季旅游的文章,重点介绍海滩活动和美食”。此外,提示词工程还包括一些高级技巧,如使用不同的角色视角、提供示例、试验不同的提示词等,能进一步提高文本生成的质量和效果。掌握提示词工程技巧对于有效利用大型语言模型至关重要,在编写代码、制作食谱等各种场景中,都能通过精准的提示词提高工作效率和创作质量。随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。
2025-02-05
怎么写好提示词
写好提示词(prompt)需要注意以下几点: 1. 明确任务:清晰地定义任务,比如写故事时包含故事背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,要提供足够信息,如写历史事件报告时提供基本信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述任务,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出,如文章需遵循特定格式或引用特定文献。 5. 使用示例:如有特定期望结果,提供示例帮助 AI 模型理解需求。 6. 保持简洁:提示词简洁明了,过多信息可能导致 AI 模型困惑,生成不准确结果。 7. 使用关键词和标签:有助于 AI 模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需要多次迭代达到满意结果。 在星流一站式 AI 设计工具中: 1. 输入语言方面,通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 2. 写好提示词的方法包括: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:在功能框增加提示词并进行加权重调节,权重数值越大越优先,还可对已有提示词权重进行编辑。 辅助功能:有翻译功能可一键将提示词翻译成英文,还有删除所有提示词和会员加速等功能。 此外,宝玉日报提到提示词应清晰明确,避免模糊不清的指令,因为 AI 无法理解用户的背景和想法,不会读心术。工作或恋爱中常见的误区同样适用于 AI 交互,要提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2025-02-04
提示词
以下是关于提示词的相关知识: 艺术字生成: 模型选择图片 2.1,输入提示词(可参考案例提示词)。 案例参考: 金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风。 巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”。 巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画。 巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 提示词相关: 什么是提示词:用于描绘想生成的画面,支持中英文输入。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。 如何写好提示词: 预设词组:小白用户可点击提示词上方官方预设词组进行生图,提示词内容应准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 提示词要素: 提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 示例:在一个旨在完成文本分类任务的提示中,指令是“将文本分类为中性、否定或肯定”,输入数据是“我认为食物还可以”部分,输出指示是“情绪:”。提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-02-04
提示词定义 思维链
提示词是设计和优化输入到 AI 系统的指令的艺术和科学,就像是与 AI 对话的语言。提示词本质上是逻辑思维和表达能力,只不过交互对象从人变成了大模型。最终要面对的问题包括知识储备不足、业务 know how 不扎实、语言逻辑有缺陷。 思维链(Chain of Thought,CoT)是一种提示技巧,使用 CoT 来指导 AI 就像进行一次探险,尽管有一条指引的路径,但每一步都需要深入的思考和策略,以确定最佳的前进方向。 密度链(Chain of Density,CoD):使用 CoD 来指导 AI 就像按照特定的顺序和结构建造一座积木塔。每一步都必须精确和有组织,以确保整体的稳定性和连续性。 在撰写提示词时,输出结果的好坏与“连续提示”息息相关,特别在“目标明确、逻辑性、分步骤、考虑变量”这四方面。随着企业面临的挑战日益复杂,简单的提示词往往无法满足需求,推动了更先进提示技巧如思维链、思维树和思维图等的发展,这些高级技巧能够引导 AI 进行更深入的分析、探索多种可能性,并处理复杂的推理任务。
2025-02-04
提示词定义
提示词(Prompt)是给大语言模型的输入文本,用于指定模型执行的任务和生成的输出。它发挥“提示”模型的作用,设计高质量的提示词需根据目标任务和模型能力精心设计,良好的提示词能让模型正确理解人类需求并给出符合预期的结果。 提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。 在星流一站式 AI 设计工具的 prompt 输入框中可以输入提示词、使用图生图功能辅助创作。输入语言方面,不同基础模型有不同要求,支持中英文输入。写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等;可调整负面提示词,帮助 AI 理解不想生成的内容;利用“加权重”功能让 AI 明白重点内容;还可使用预设词组、辅助功能如翻译、删除所有提示词、会员加速等。
2025-02-04
为本地部署的stable diffusion增加中文提示词支持
要为本地部署的 Stable Diffusion 增加中文提示词支持,可以采取以下方法: 1. 如果使用的秋叶整合包,里面包含提示词联想插件。输入简单字符如“1”,能看到下方联想热门提示词,适合英文不好、记不住单词的朋友。 2. 一般情况可使用翻译软件,如 DeepL 翻译(网址:https://www.deepl.com/translator ,可下载客户端)或网易有道翻译(可通过 ctrl+alt+d 快速截图翻译),但复制粘贴来回切换较麻烦。 3. 介绍自动翻译插件 promptallinone,安装方式:在扩展面板中搜索 promptallinone 直接安装,或把下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下。安装完成后重启 webUI,可看到提示词区域变化。 一排小图标中,第一个用来设置插件语言,直接设为简体中文。 第二个图标是设置,点开后点击第一个云朵图标可设置翻译接口,点击第一行下拉菜单能选择翻译软件,有一些免费软件可任意选择并试验哪款翻译准确。 关于 Stable Diffusion 文生图写提示词: 1. 下次作图时,先选模板,点击倒数第二个按钮可快速输入标准提示词。 2. 描述逻辑通常包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)等,通过这些详细提示词能更精确控制绘图。 3. 新手可借助功能型辅助网站写提示词,如: http://www.atoolbox.net/ ,通过选项卡方式快速填写关键词信息。 https://ai.dawnmark.cn/ ,每种参数有缩略图参考,更直观选择提示词。 还可去 C 站(https://civitai.com/)抄作业,每张图有详细参数,点击复制数据按钮,粘贴到正向提示词栏,点击生成按钮下第一个按键,Stable Diffusion 可自动匹配所有参数,但要注意图像作者使用的大模型和 LORA,也可取其中较好的描述词使用。
2025-02-03