Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

token是什么

Answer

在大语言模型领域,Token 通常用来表示文本数据中的一个单元。在不同语境下,一个 Token 可能代表一个字、一个词或一个句子。在英文中,通常是一个词或标点符号;在一些汉语处理系统中,可能是一个字或一个词。Token 是处理和理解文本数据的基本单元。

在深度学习的语言模型中,如 Transformer,输入的文本首先被切分成一系列的 Tokens。这些 Tokens 被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,Token 可以被理解为语言模型接收和处理的最小信息单元。在训练过程中,每个 Token 会关联一个预测,这个预测可以是下一个 Token 的预测,也可以是该 Token 的属性预测,如词性、情感等。

训练 Token 的数量会影响模型的性能和准确性。更多的训练 Token 通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的 Token 也会增加计算的复杂性和计算资源的需求。

很多同学把 Token 理解为中文语义里的“字节”,这种理解有一定相似度,因为“字节”是计算机存储和处理数据的基本单元,而“Token”是语言模型处理文本信息的基本单元。但不准确的地方在于:“Token”在语言模型中的作用比“字节”在计算机中的作用更加复杂和多元。在大语言模型中,“Token”不仅代表文本数据中的一个单位,而且每个“Token”都可能携带丰富的语义信息。比如,在处理一句话时,“Token”可能表示一个字、一个词甚至一个短语,同时每个“Token”在模型中都有一个对应的向量表示,这个向量包含了该“Token”的语义信息、句法信息等。

Unicode 是一种在计算机上使用的字符编码,为每种语言中的每个字符设定了统一且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。有意思的是,Unicode 不仅有自然语言,还包含 emoji 等自然语言之外的符号,这也是 ChatGPT 能理解和回复 emoji 的原因。所以,GPT 实际是将我们输入的文字转换成 Token,然后通过 GPT 模型预测 Token,再将 Token 转换成文字,最后输出给我们。

通过 Token 的学习,能感觉到 ChatGPT 理解文本的方式和人类不同,它在以自己的方式理解世界。尽管“Token”和“字节”都是基本的处理单位,但“Token”在大语言模型中的含义和作用比“字节”在计算机中的含义和作用更加丰富和复杂。

另外,如果曾经“机翻”过一些文档,会经常看到“Token”被自动翻译工具翻译为“令牌”。GPT 的输入和输出不是到中文字的粒度,它能处理几乎世界上所有流行的自然语言,所以需要引入 Token 的概念,Token 是自然语言处理的最细粒度,GPT 的输入和输出都是一个个的 Token。GPT 适用于几乎所有流行的自然语言,其 Token 需要兼容几乎人类的所有自然语言,通过 Unicode 编码来实现。

Content generated by AI large model, please carefully verify (powered by aily)

References

关于 token 你应该了解……

在大语言模型领域,Token通常用来表示文本数据中的一个单元。在不同的语境下,一个token可能代表一个字、一个词,或者是一个句子。在英文中,一个token通常是一个词或者是标点符号。在一些汉语处理系统中,一个token可能是一个字,也可能是一个词。Token是处理和理解文本数据的基本单元。在深度学习的语言模型中,如Transformer,输入的文本首先被切分成一系列的tokens。这些tokens被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,token可以被理解为语言模型接收和处理的最小的信息单元。在训练过程中,每个token会关联一个预测,这个预测可以是下一个token的预测,也可以是该token的属性预测,如词性、情感等。训练token的数量会影响模型的性能和准确性。更多的训练token通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的token也会增加计算的复杂性和计算资源的需求。基于上述解释,很多同学把token理解为中文语义里的“字节”,对于这种理解,只能说从类比关系上有一定的相似度,因为"字节"是计算机存储和处理数据的基本单元,而"token"则是语言模型处理文本信息的基本单元。但这种理解不够准确的地方在于:"Token"在语言模型中的作用比"字节"在计算机中的作用更加复杂和多元。在大语言模型中,"token"不仅代表文本数据中的一个单位,而且每个"token"都可能携带了丰富的语义信息。比如,在处理一句话时,"token"可能表示一个字,一个词,甚至一个短语,这些都可以被认为是语言的基本单元。同时,每个"token"在模型中都有一个对应的向量表示,这个向量包含了该"token"的语义信息、句法信息等。

关于 token 你应该了解……

Unicode(统一码、万国码、单一码)是一种在计算机上使用的字符编码。Unicode是为了解决传统的字符编码方案的局限而产生的,它为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。例如中文中的你字对应如下unicode编码:\u表示后面是一个unicode编码,它用16进制数表示。4F60转换成10进制对应20320,20320表示在unicode编码中,第20320个编码对应的是字是你。最后将20320转换为2进制,得到如下结果:有意思的是,unicode不仅有自然语言,实际上也包含emoji等自然语言之外的符号。这也是为什么ChatGPT能理解和回复emoji的原因。所以,GPT实际是将我们输入的文字转换成token,然后通过GPT模型预测token,再将token转换成文字,最后再输出给我们。通过token的学习,我们能感觉到ChatGPT理解文本的方式和人类并不相同,它在以自己的方式理解这个世界。

关于 token 你应该了解……

所以,尽管"token"和"字节"都是基本的处理单位,但是"token"在大语言模型中的含义和作用要比"字节"在计算机中的含义和作用更加丰富和复杂。另外,如果现在正在浏览这篇帖子的你曾经“机翻”过一些文档的话,你会经常看到“token”被自动翻译工具翻译为“令牌”,我不知道你是否对于这一翻译感到过疑惑,我感到过,所以我问了:为什么会有token这部分内容引用了知乎作者[卡卡罗特](https://www.zhihu.com/people/jun-wan-70)的专栏文章:[ChatGPT实用指南(一)-知乎(](https://zhuanlan.zhihu.com/p/620426699)[zhihu.com](https://wx.zsxq.com/dweb2/zhihu.com)[)](https://zhuanlan.zhihu.com/p/620426699)内容过于学术所以只做了节选,特别感兴趣的同学也可以点进去查阅完整文章,写的是非常好的。GPT的输入和输出都是到中文字的粒度吗?注意,GPT不仅仅能处理中文,它还能处理几乎世界上所有流行的自然语言。所以这告诉我们GPT实际的输入和输出并不是像我们想象的样子。因此,我们需要引入token的概念。token是自然语言处理的最细粒度。简单点说就是,GPT的输入是一个个的token,输出也是一个个的token。GPT不是适用于某一门语言的大型语言模型,它适用于几乎所有流行的自然语言。所以GPT的token需要兼容几乎人类的所有自然语言,那意味着GPT有一个非常全的token词汇表,它能表达出所有人类的自然语言。如何实现这个目的呢?答案是通过unicode编码。

Others are asking
AI中常说的token是什么
Token 是大模型语言体系中的最小单元。 在人类语言中,不同语言都有最小的字词单元,如汉语的字/词、英语的字母/单词。而在大模型语言体系中,Token 就相当于这样的最小单元。 当我们向大模型发送文本时,大模型会先将文本转换为它自己的语言,并推理生成答案,然后再翻译为我们能看懂的语言输出。 不同厂商的大模型对中文文本的切分方法不同,通常情况下,1 个 Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。 例如,在英文中,单词“hamburger”会被分解成“ham”“bur”和“ger”这样的 Token,而常见的短单词如“pear”则是一个 Token。对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。但要注意,在给定的 API 请求中,文本提示词和生成的补合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2025-01-08
智谱 注册送2000万 tokens
智谱 BigModel 共学营第二期相关信息如下: 本期共学应用为人人可打造的微信助手。 注册智谱 Tokens:智谱 AI 开放平台的网址为 https://bigmodel.cn/ 。参与课程至少需要有 token 体验资源包,获取资源包有三种方式: 新注册用户,注册即送 2000 万 Tokens。 充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用的网址为 https://open.bigmodel.cn/finance/pay 。 共学营报名赠送资源包。 语言资源包:免费 GLM4Flash 语言模型/ 。 多模态资源包: 。 多模态资源包: 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 会议 ID:185 655 937 ,会议链接:https://vc.feishu.cn/j/185655937 ,共学营互动群。 BigModel 开放平台是智谱一站式的大模型开发及应用构建平台。基于智谱自研的全模型矩阵,面向企业客户及合作伙伴,支持多样化模型和自定义编排。平台提供即插即用的智能工具箱,包括 API 接口、模型微调及部署功能,同时具备流程编排以适应复杂业务场景。还提供免费、好用、高并发的 GLM4Flash 模型,0 元上手大模型,新用户注册登录即送 2000 万 Tokens,调用智谱全家桶模型。更多应用场景包括: 。
2024-12-05
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
目前各大主流模型的 max output token
以下是目前各大主流模型的 max output token 情况: Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开: 。此外,GPT3 和 GPT3.5/4 的 token 计算方式不同,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2024-11-24
什么是AI中的Token
Token 在 AI 中,就像人类语言有最小的字词单元,大模型也有自己的语言体系,其中的最小单元被称为 Token。 在将人类发送的文本传递给大模型时,大模型会先把文本转换为自己的语言,推理生成答案后再翻译为人类能看懂的语言输出。不同厂商的大模型对中文的文本切分方法不同,通常情况下,1 Token 约等于 1 2 个汉字。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。Token 可以是单词,也可以是字符块,例如单词“hamburger”被分解成“ham”“bur”和“ger”,而很短且常见的单词像“pear”是一个 Token。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。
2024-11-20
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18