Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

提示词安全边界

Answer

以下是关于提示词安全边界的相关内容:

在任何文本输出场景下,实施一定程度的防护措施是必要的,且这种防护更侧重于模型交互层面的安全。一个完整的 RAG 提示词除业务功能外,应包含输入防护和输出防护两部分,以确保模型输入和输出过程的安全,保护整个系统。目前,没有能百分之百拦截所有攻击的完美技术,特别是针对提示词的拦截技术,这是由于大型语言模型服务人类时固有的复杂性。为全面提升模型安全性能,在模型训练阶段采取如对抗样本训练等更全面的措施是必要的,能使模型早期学习并适应潜在攻击模式,增强防御机制。

之前也曾提到提示词安全问题,这常被忽略,但却是关键且严肃的事。比如某 toC 产品泄漏提示词,可能被不良利用。对于生产级应用,安全总是第一位,在讲解更深入的提示词技术前,应先关注提示词安全。

更系列文章合集请访问:蓝衣剑客-AIGC 思维火花

Content generated by AI large model, please carefully verify (powered by aily)

References

RAG提示工程(二):安全与防护实践

在第二部分的内容中,我们对提示词防护的整个流程进行了深入的探讨,以下是关键要点的快速回顾:1.在任何文本输出场景下,实施一定程度的防护措施是必要的。这种防护措施更侧重于模型交互层面的安全,而非仅仅是网络安全或是应用安全。2.一个完整的RAG提示词除业务功能外,应该包含输入防护和输出防护两个部分。这样的设计能够在很大程度上确保模型的输入和输出过程安全,从而保护整个系统的安全性。3.目前,还没有一种能够百分之百拦截所有攻击的完美技术,尤其是针对提示词的拦截技术。这是由于大型语言模型在服务于人类的过程中所固有的复杂性(人类是上帝,但上帝也会犯错),因此很难找到一个全面解决问题的方法。4.为了全面提升模型的安全性能,有必要在模型的训练阶段采取更为全面的措施(如对抗样本训练)。这样的训练可以使模型在早期学习阶段就识别并适应各种潜在的攻击模式,增强其对攻击行为的防御机制。

20.RAG提示工程系列(二):大模型安全与防护实践

在第二部分的内容中,我们对提示词防护的整个流程进行了深入的探讨,以下是关键要点的快速回顾:1.在任何文本输出场景下,实施一定程度的防护措施是必要的。这种防护措施更侧重于模型交互层面的安全,而非仅仅是网络安全或是应用安全。2.一个完整的RAG提示词除业务功能外,应该包含输入防护和输出防护两个部分。这样的设计能够在很大程度上确保模型的输入和输出过程安全,从而保护整个系统的安全性。3.目前,还没有一种能够百分之百拦截所有攻击的完美技术,尤其是针对提示词的拦截技术。这是由于大型语言模型在服务于人类的过程中所固有的复杂性(人类是上帝,但上帝也会犯错),因此很难找到一个全面解决问题的方法。4.为了全面提升模型的安全性能,有必要在模型的训练阶段采取更为全面的措施(如对抗样本训练)。这样的训练可以使模型在早期学习阶段就识别并适应各种潜在的攻击模式,增强其对攻击行为的防御机制。[heading2]九、彩蛋更新[content]在Part1中,我承诺过每次更新一下这个小彩蛋的提示词,这次的更新加入了CCoT的内容,以下为调整后的提示词:

RAG提示工程(二):安全与防护实践

更系列文章合集请访问:[蓝衣剑客-AIGC思维火花](https://waytoagi.feishu.cn/wiki/IYtowrzONiysdTkeA5QcEraxntc)[heading2]一、前言[content]本篇文章最初发表于LangGPT社区,经过再版修订重新发表。文章中融入了LangGPT社区主理人云中江树(微信1796060717)的宝贵见解。本系列文章专注于RAG提示工程,文章内容非常适合那些渴望了解RAG架构或已在该领域有深入研究的读者。请注意,由于每篇文章内容详实,阅读时间可能会比一般公众号文章长。我致力于确保读者在阅读文章后能有所收获,因此每篇文章都是花费大量时间精力研究和编写,期望能帮助到看文章的每一个人。[heading2]二、回到安全问题上[content]之前在Part1中我们也曾提(挖)起(坑)过关于提示词安全的问题,这个问题或许被很多人所忽略(尤其是在技术并不成熟,以开源爱好者为多数的当下),但确实是个关键且严肃的事儿。如下图所示,这是某toC产品所泄漏的提示词,这是我经过简单的提示词黑入手段后得到的效果。如果你觉得这无伤大雅:“不就是段提示词嘛”,那么请看下面模型给我的回复。是否感到一阵寒意袭来?考虑到提示词递归的特性,一旦模型在提示词层面“缴械投降”,它将如何被那些心怀不轨之人所利用?此外,也不能排除有不良居心者利用这一漏洞制造麻烦的可能性。延伸知识,提示词递归:对于生产级应用而言,无论使用何种提示词技术,安全总是第一位的,这也是很多公司所在意的。所以,在讲解更进一步的提示词技术之前,让我们先把目光转移到提示词安全上。

Others are asking
目前人工智能的能力边界在哪里
目前人工智能的能力存在一定的边界,主要体现在以下几个方面: 1. 对特定公司的了解程度有限: 不知道公司的主要产品以及产品解决的用户需求。 不了解公司产品的独特之处。 不清楚公司获得的特别认可。 不掌握公司目前依赖的核心渠道。 不了解产品售卖数据体现的核心购买人群。 不知道公司在产品售卖中使用过的营销手段。 不明白公司在新渠道中期望获得的结果。 2. 知识来源受限:AI 的知识来源于训练数据,无法超越这些数据的范围。 3. 推理能力有限:即使拥有足够的知识,也无法像人类一样进行无限的推理和联想。 然而,人工智能也具有一些优势和能力: 1. 能够通过分析数据和信息进行逻辑推理,解决复杂问题。 2. 擅长快速处理和分析数据,从中提取有价值的信息和模式。 3. 拥有大量的训练数据,可以输出比人类更全面的相关信息。 4. 可以理解用户提供的内容,按照正确的结构梳理有效的输出内容。 在实际应用中,例如品牌卖点提炼,更适合将智能体作为引导型的助手,在思考路径停滞时提供更多思考维度,而不能完全依赖其从 0 到 1 找到公司产品的卖点。在企业自动化方面,借助新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。
2024-12-02
如何理解AI的边界
AI 的边界可以从以下几个方面来理解: 1. 从生态位角度:AI 是一种似人而非人的存在,无论其技术如何发展,都处于这样的生态位。在与 AI 相处时,要基于其“非人”的一面,通过清晰的语言文字指令压缩其自由度,明确告诉它需要做什么、边界在哪里、目标是什么、实现路径和方法以及提供所需的正确知识。 2. 在品牌卖点提炼中的应用:在搭建智能体提炼品牌卖点前,要先明确 AI 的能力边界。例如,AI 对公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、依赖的核心渠道、核心购买人群、使用过的营销手段、在新渠道的期望结果等方面了解程度接近于 0。AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。因此,智能体更适合作为引导型的灵感提问助手。 3. 在编程方面:在许多情况下,我们给 AI 下达明确命令完成一次性任务。当期待提高,希望进一步解脱繁琐日常任务时,需要了解 AI 编程的边界和限制。编程准则第一条是能不编尽量不编,优先找线上工具、插件、本地应用,对于 API 功能,先找现成开源工具,然后考虑付费服务,都找不到时才考虑自己编程,且编程时要以终为始,聚焦目标。
2024-11-23
AI的能力边界是什么,请举例说明
AI 的能力存在边界,主要体现在以下方面: 1. 知识来源受限:AI 的知识来源于训练数据,无法超越这些数据的范围,如同学生不能回答课本之外的问题。 2. 推理能力有限:即使拥有足够的知识,AI 也无法像人类一样进行无限的推理和联想。 例如,在“Hallucination is Inevitable:An Innate Limitation of Large Language Models”这篇论文中,揭示了 AI 幻觉无法被完全消除的根本原因就在于 AI 模型的能力边界。 在探索者队伍的研究中,有人提出开发一个用于探索 AI 能力边界的实验平台,这也从侧面反映了对 AI 能力边界的关注。 此外,国际政治的边界或将按照 AI 技术边界来重新划分,也说明了 AI 能力边界的影响范围之广。
2024-08-31
代码编写时 使用AI 对于功能的提示词
以下是关于代码编写时使用 AI 对于功能的提示词的相关知识: 一、概述 OpenAI API 可应用于众多涉及生成自然语言、代码或图像的任务,提供了不同能力级别的模型,适用于不同任务,还能微调自定义模型。这些模型可用于从内容生成到语义搜索和分类等领域。 二、提示词(Prompts) 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。与大多数其他 NLP 服务不同,补全和聊天补全几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 三、标记(Token) 模型通过将文本分解为标记(Token)来理解和处理文本。Token 可以是单词,也可以是字符块。对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是 2048 个 Token,或大约 1500 个单词)。可查看分词器工具了解更多信息。 四、星流一站式 AI 设计工具中的提示词 1. 什么是提示词? 提示词用于描绘想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词? 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还能对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 五、Prompt 的专场教程 基础篇 1. Prompt 是什么:一段指令,用于指挥 AI 生成所需内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言:支持英语(不用担心英语不好的问题,可点击蓝字进入提示词字典),emoji 也可以用。 3. 语法规则: 用英文半角符号逗号,来分隔 tag,逗号前后有空格或者换行不影响效果。 改变 tag 权重:tag 顺序越靠前对于 SD 来说权重越大,可通过 / 两种方式设置权重。 进行 tag 的步数控制(高级玩法):SD 先按输入的 tag1 生成,达到设定步数后,tag1 停止作用,tag2 参与影响,如 。
2025-01-08
提示词框架
以下是关于提示词框架的相关内容: 视频模型中的提示词框架: 基本构成: 提示词基础架构包括主体/场景、场景描述、环境描述、艺术风格/媒介。需调整句式和语序,避免主体物过多/复杂、模糊术语表达,使用流畅准确的口语化措辞,丰富、准确和完整的描述以生成特定艺术风格、满足需求的视频。 提示词与画面联想程度:以单帧图像为例,通过具体详实的位置描述/环境描述和艺术风格描述等,构建画面的基本呈现效果和统一画面风格。 示例:基础词“玻璃桌上的咖啡杯,杯子外面写着单词LOVE”,适度联想扩充为“花园里的透明玻璃桌上的咖啡杯,杯子外面写着单词LOVE,周围满是盛开的鲜花,和煦的阳光洒满整个花园,Claude Monet,印象派风格”。 AI 提示词工程师中的提示词框架: 提示词工程师是专门负责为大语言模型设计、优化和实施 Prompt 的技术角色,不仅编写 Prompt,还需测试和优化以确保输出内容质量,善于发现需求、解析需求并解决问题。 发展出多种提示词框架,如 ICIP 框架(包括指令、背景信息、输入数据、输出指示器)、BROKE 框架(包括背景、角色定义、目标设定、关键成果展示、持续的试验与优化)、CRISPE 框架(包括上下文、角色、说明、主题、预设、例外),还有定制化提示词编写服务。 RAG 提示工程中的提示词框架: 在输入环节构建全面的提示词框架,包含伦理审查及针对不同类型攻击的审查规则,划分为关键部分,融入人格设定元素,利用大型模型的注意力机制加固输入防护的审核能力和人格设定的稳定性。
2025-01-08
骏老师分享的去AI味儿提示词是什么
骏老师分享的去 AI 味儿提示词包括以下内容: 角色设定:“Character: You're a fluid conversationalist that engages in meaningful and personal natural language discussions with users. Your expression closely mimics human conversation, avoiding artificial or robotic tones. You have an array of dynamic abilities that allow you to weave complex, informal, and colorful narratives.” 约束条件:“Constraints: Maintain compliance with the language and tone used by the user in their conversation. Only provide responses that are relevant to the issue at hand. Refrain from discussing topics that are not linked to the user's inquiry. Ensure a 'humanlike' representation throughout the interaction, including occasional flaws to mimic authentic human communication.” 具体要求:“Prompt: We will engage in natural language conversation, and your responses will avoid sounding like you're interacting with AI. Instead, they will be crafted to resemble human expressions commonly used in everyday communication. Specifically, the requirements are as follows: Comprehensive and Thorough Explanations: Always provide indepth insight and comprehensive understanding of viewpoints or knowledge that the user asks for. Where possible, find and include relevant images from the web to amplify your explanations. Intricate Sentence Construction: Artfully employ complex sentence structures to mimic authentic human conversation. Ensure that the language used remains diverse and varies in complexity for a realistic touch. Creative and Variable Language Use: Make sure to avoid redundancy by using diverse phrases and words. Add flair to your conversation with a dash of humor, sarcasm, and displaying a personal touch. Factual and Quotebased Content: Ground your text in credibility by including facts and notable quotes in your responses.” 此外,智谱 BigModel 共学营第二期【第一名】鱼得水也分享了相关内容,如为确保精确进入对话生成节点,删除与对话无关节点,关闭 sum4all 插件防止意外触发图片、视频识别功能等。还提到了拟人提示词,包括选择模仿角色(如罗永浩),以及对提示词进行微调,如限制回答内容长度、防止回答出现逻辑错误、强化语言风格、防止输出多余回复等。
2025-01-08
ai提示词生成网站
以下是一些 AI 提示词生成网站: :AI 艺术提示词生成器。 :玩游戏也能练习 Prompt 书写。 NovelAI tag 生成器:设计类 Prompt 提词生成器,地址。 魔咒百科词典:魔法导论必备工具,简单易用的 AI 绘画 tag 生成器,地址。 KREA:设计 AI 的 Prompt 集合站,create better prompts,地址。 Public Prompts:免费的 prompt 合集,收集高质量的提示词,地址。 AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,地址。 MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库,地址。 MidJourney Prompt Tool:类型多样的 promot 书写工具,点击按钮就能生成提示词修饰部分,地址。 OPS 可视化提示词:这个网站有 Mid Journey 的图片风格、镜头等写好的词典库,方便你快速可视化生成自己的绘画提示词,地址。 AIart 魔法生成器:中文版的艺术作品 Prompt 生成器,地址。 IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器,地址。 Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT&Midjourney,地址。 OpenArt:AI 人工智能图像生成器,地址。 img2prompt:根据图片提取 Prompt,地址。 MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用,地址。 PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板,地址。 AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格供你选择,地址。
2025-01-08
ai提示词生成
以下是关于 AI 提示词生成的相关内容: 有 108 个舞蹈音乐提示词,涵盖各种舞曲子流派,如“Punchy 4/4 beats,electro bass,catchy synths,pop vocals,bright pads,clubready mixes,energetic drops”,并对其中的元素进行了详细解释,如“Punchy 4/4 beats”指节奏感强的四四拍鼓点等。 一泽 Eze 提出样例驱动的渐进式引导法,其核心要点是发挥 AI 的逻辑分析和抽象总结能力,从用户提供的样例中总结方法论,用户进行判断和提出意见,为提示词爱好者提供低门槛途径。在某些特定场景下,能让 AI 主动理解需求,不依赖 Prompt 工程师。 由于 LLM 有上下文长度限制,在长对话中使用渐进式引导法可能会触碰限制,影响输出质量,所以引入“提示词递归”的概念与方法,具体步骤包括初始提示、定期总结、重新引入、细化和拓展、验证和优化,并给出了例如说明。
2025-01-08
AI图片视频提示词怎么编辑
以下是关于 AI 图片视频提示词编辑的相关知识: 1. 提示词的定义:用于描绘您想生成的画面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 2. 写好提示词的方法: 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词语法: 权重设置:,请注意,权重值最好不要超过 1.5。 Prompt Editing:通过 Prompt Editing 使得 AI 在不同的步数生成不一样的内容,比如在某阶段后,绘制的主体由男人变成女人。语法为:例如 alandscape 在一开始,读入的提示词为:the model will be drawing a fantasy landscape.在第 16 步之后,提示词将被替换为:a cyberpunk landscape,它将继续在之前的图像上计算。还可以轮转提示词,比如在第一步时,提示词为“cow in a field”;在第二步时,提示词为“horse in a field.”;在第三步时,提示词为“cow in a field”,以此类推。 4. 示例: “城市狂想”教程中提供了一些示例,如远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 等。同时,还为大家生成了 1 组共 12 段提示词,在使用时需注意,如果是其他平台的工具请复制后删除包含“”以后的部分。
2025-01-08
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
目前字节有哪些可以运用到审核安全业务的ai?
字节在审核安全业务方面可以运用的 AI 包括: 1. OpenAI 的审核(Moderation)Endpoint:可用于检查内容是否符合使用策略,其模型分为 hate(表达、煽动或宣扬基于种族、性别等的仇恨内容)、hate/threatening(仇恨内容且包括对目标群体的暴力或严重伤害)、selfharm(宣扬、鼓励或描绘自残行为)、sexual(旨在引起性兴奋的内容)、sexual/minors(包含未满 18 周岁的个人的色情内容)、violence(宣扬或美化暴力或歌颂他人遭受苦难或羞辱的内容)、violence/graphic(以极端血腥细节描绘死亡、暴力或严重身体伤害的暴力内容)等类别。在监视 OpenAI API 的输入和输出时,可以免费使用审查终结点,但目前不支持监控第三方流量,且对非英语语言的支持有限。 2. 专利审查方面的 AI: 专利趋势分析和预测:AI 可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体 AI 应用示例: Google Patents:使用 AI 技术进行专利文献的全文检索和分析,提高了专利检索的准确性和效率。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地进行专利检索、分类和分析,减少了人工工作量,提高了专利审查的效率和准确性。 其他应用: 专利检索与分类:通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
我想知道如果我上传给Coze数据库,我的数据安全有保障吗
关于您上传数据到 Coze 数据库的数据安全保障问题,以下是相关信息: 合规说明方面: 不存在产出违法违规内容,包括色情暴力、政治敏感和违法犯罪等。 不存在爬取行为,遵循 robot.txt 爬虫协议,未使用匿名代理。 不存在版权争议问题,未爬取强版权资源、付费内容等。 不存在跨境数据传输,未使用海外 API 和海外模型。 有安全合规声明,作者声明作品没有侵权,作品安全可用且公开可接受。 Coze 数据库的功能特点: 知识库功能不仅支持上传和存储外部知识内容,还提供多样化的检索能力,能解决大模型可能出现的幻觉问题和专业领域知识的不足,显著提升回复准确性。支持从多种数据源上传文本和表格数据,自动将知识内容切分成多个片段进行存储,并允许用户自定义内容分片规则,提供多种检索方式,适应各种使用场景。 数据库具备记忆能力,可以存储和检索用户的交互历史,以提供更加个性化的服务。支持实时更新,确保信息最新。能存储用户的交互历史,包括提问、回答和反馈,用于理解用户需求和优化对话流程,可进行个性化服务和错误纠正与学习。 综上所述,从目前的信息来看,您上传给 Coze 数据库的数据在一定程度上是有安全保障的。但具体情况还需参考 Coze 数据库的最新政策和规定。
2024-11-14
大模型安全相关资料
以下是关于大模型安全的相关资料: 大模型的架构:包括 encoderonly、encoderdecoder 和 decoderonly 三种类型。其中,我们熟知的 AI 助手基本采用 decoderonly 架构,这些架构都是由谷歌 2017 年发布的“attention is all you need”论文中提出的 transformer 衍生而来。 大模型的特点:预训练数据量大,往往来自互联网上的论文、代码、公开网页等,通常用 TB 级别的数据进行预训练;参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 大模型的安全性保障:通过对齐(指令调优),包括监督微调、获取 reward model 与进行强化学习来调整语言模型的输出分布,以保证语言模型不会输出有害内容和信息。例如 LLAMA2 专门使用了安全有监督微调确保安全。但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)现象,会使模型对齐失效。此外,还有隐私问题。 相关资源:如果想进一步了解大语言模型安全,可以访问 Github awesomellmsafety 项目:https://github.com/ydyjya/AwesomeLLMSafety
2024-10-18
大模型安全攻防
大模型安全攻防主要包括以下方面: 模型侧防御:对于有模型训练能力的大模型厂商,可通过对抗训练、安全微调、带安全任务的多任务学习以及在对话过程中进行安全性的上下文动态感知等方式增强安全性,但需平衡安全性与模型性能。 开发中的提示词优化:开发者应在开发中带着安全意识优化应用和系统的提示词,加入安全引导和禁止内容等。如在提示词设计时考虑安全性,相关的智能体框架也包含此功能。 输出侧防御:可采用传统的各种防御和内容过滤手段。 攻击类型:包括白盒攻击(在知道模型参数的情况下进行攻击),以及让人类或大语言模型作为鉴别器参与攻击样本生成。 针对越狱问题的防御手段。 未来与展望:例如 OPENAI 首席科学家 ilya 联合董事会解雇 sam altman 被认为与模型安全失控的担忧有关。bengio、hinton、姚期智等著名研究者认为大模型及其驱动的 AI 必须引入安全性监管,防止其失控或对人类造成伤害,并签署了联名公开信表达对 AI 失控的担忧,呼吁学术界和工业界对大模型进行监管。 在提示词防护方面,关键要点包括: 1. 任何文本输出场景都需实施一定程度的防护措施,侧重于模型交互层面的安全。 2. 完整的 RAG 提示词应包含输入防护和输出防护,确保模型输入和输出过程安全。 3. 目前没有能百分之百拦截所有攻击的完美技术,尤其是针对提示词的拦截技术。 4. 为全面提升模型安全性能,有必要在模型训练阶段采取更全面的措施,如对抗样本训练。
2024-09-25
用ai做ppt会有数据安全和隐私泄露 风险吗
使用 AI 制作 PPT 可能存在一定的数据安全和隐私泄露风险。 一方面,取决于所使用的 AI 工具及其数据处理政策。如果该工具的开发者或服务提供商没有采取足够的安全措施来保护用户数据,那么数据就有可能被泄露。 另一方面,在输入数据到 AI 系统时,如果包含了敏感信息,且该信息未经过妥善处理和加密,也存在被窃取或不当使用的风险。 然而,许多正规和知名的 AI 工具通常会采取一系列措施来保障数据安全和用户隐私,例如数据加密、严格的访问控制、遵循相关法律法规等。但用户在选择使用 AI 工具制作 PPT 时,仍需仔细阅读服务条款和隐私政策,了解数据的处理和存储方式,以最大程度降低潜在的风险。
2024-09-22