Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

提示词安全边界

Answer

以下是关于提示词安全边界的相关内容:

在任何文本输出场景下,实施一定程度的防护措施是必要的,且这种防护更侧重于模型交互层面的安全。一个完整的 RAG 提示词除业务功能外,应包含输入防护和输出防护两部分,以确保模型输入和输出过程的安全,保护整个系统。目前,没有能百分之百拦截所有攻击的完美技术,特别是针对提示词的拦截技术,这是由于大型语言模型服务人类时固有的复杂性。为全面提升模型安全性能,在模型训练阶段采取如对抗样本训练等更全面的措施是必要的,能使模型早期学习并适应潜在攻击模式,增强防御机制。

之前也曾提到提示词安全问题,这常被忽略,但却是关键且严肃的事。比如某 toC 产品泄漏提示词,可能被不良利用。对于生产级应用,安全总是第一位,在讲解更深入的提示词技术前,应先关注提示词安全。

更系列文章合集请访问:蓝衣剑客-AIGC 思维火花

Content generated by AI large model, please carefully verify (powered by aily)

References

RAG提示工程(二):安全与防护实践

在第二部分的内容中,我们对提示词防护的整个流程进行了深入的探讨,以下是关键要点的快速回顾:1.在任何文本输出场景下,实施一定程度的防护措施是必要的。这种防护措施更侧重于模型交互层面的安全,而非仅仅是网络安全或是应用安全。2.一个完整的RAG提示词除业务功能外,应该包含输入防护和输出防护两个部分。这样的设计能够在很大程度上确保模型的输入和输出过程安全,从而保护整个系统的安全性。3.目前,还没有一种能够百分之百拦截所有攻击的完美技术,尤其是针对提示词的拦截技术。这是由于大型语言模型在服务于人类的过程中所固有的复杂性(人类是上帝,但上帝也会犯错),因此很难找到一个全面解决问题的方法。4.为了全面提升模型的安全性能,有必要在模型的训练阶段采取更为全面的措施(如对抗样本训练)。这样的训练可以使模型在早期学习阶段就识别并适应各种潜在的攻击模式,增强其对攻击行为的防御机制。

20.RAG提示工程系列(二):大模型安全与防护实践

在第二部分的内容中,我们对提示词防护的整个流程进行了深入的探讨,以下是关键要点的快速回顾:1.在任何文本输出场景下,实施一定程度的防护措施是必要的。这种防护措施更侧重于模型交互层面的安全,而非仅仅是网络安全或是应用安全。2.一个完整的RAG提示词除业务功能外,应该包含输入防护和输出防护两个部分。这样的设计能够在很大程度上确保模型的输入和输出过程安全,从而保护整个系统的安全性。3.目前,还没有一种能够百分之百拦截所有攻击的完美技术,尤其是针对提示词的拦截技术。这是由于大型语言模型在服务于人类的过程中所固有的复杂性(人类是上帝,但上帝也会犯错),因此很难找到一个全面解决问题的方法。4.为了全面提升模型的安全性能,有必要在模型的训练阶段采取更为全面的措施(如对抗样本训练)。这样的训练可以使模型在早期学习阶段就识别并适应各种潜在的攻击模式,增强其对攻击行为的防御机制。[heading2]九、彩蛋更新[content]在Part1中,我承诺过每次更新一下这个小彩蛋的提示词,这次的更新加入了CCoT的内容,以下为调整后的提示词:

RAG提示工程(二):安全与防护实践

更系列文章合集请访问:[蓝衣剑客-AIGC思维火花](https://waytoagi.feishu.cn/wiki/IYtowrzONiysdTkeA5QcEraxntc)[heading2]一、前言[content]本篇文章最初发表于LangGPT社区,经过再版修订重新发表。文章中融入了LangGPT社区主理人云中江树(微信1796060717)的宝贵见解。本系列文章专注于RAG提示工程,文章内容非常适合那些渴望了解RAG架构或已在该领域有深入研究的读者。请注意,由于每篇文章内容详实,阅读时间可能会比一般公众号文章长。我致力于确保读者在阅读文章后能有所收获,因此每篇文章都是花费大量时间精力研究和编写,期望能帮助到看文章的每一个人。[heading2]二、回到安全问题上[content]之前在Part1中我们也曾提(挖)起(坑)过关于提示词安全的问题,这个问题或许被很多人所忽略(尤其是在技术并不成熟,以开源爱好者为多数的当下),但确实是个关键且严肃的事儿。如下图所示,这是某toC产品所泄漏的提示词,这是我经过简单的提示词黑入手段后得到的效果。如果你觉得这无伤大雅:“不就是段提示词嘛”,那么请看下面模型给我的回复。是否感到一阵寒意袭来?考虑到提示词递归的特性,一旦模型在提示词层面“缴械投降”,它将如何被那些心怀不轨之人所利用?此外,也不能排除有不良居心者利用这一漏洞制造麻烦的可能性。延伸知识,提示词递归:对于生产级应用而言,无论使用何种提示词技术,安全总是第一位的,这也是很多公司所在意的。所以,在讲解更进一步的提示词技术之前,让我们先把目光转移到提示词安全上。

Others are asking
目前人工智能的能力边界在哪里
目前人工智能的能力存在一定的边界,主要体现在以下几个方面: 1. 对特定公司的了解程度有限: 不知道公司的主要产品以及产品解决的用户需求。 不了解公司产品的独特之处。 不清楚公司获得的特别认可。 不掌握公司目前依赖的核心渠道。 不了解产品售卖数据体现的核心购买人群。 不知道公司在产品售卖中使用过的营销手段。 不明白公司在新渠道中期望获得的结果。 2. 知识来源受限:AI 的知识来源于训练数据,无法超越这些数据的范围。 3. 推理能力有限:即使拥有足够的知识,也无法像人类一样进行无限的推理和联想。 然而,人工智能也具有一些优势和能力: 1. 能够通过分析数据和信息进行逻辑推理,解决复杂问题。 2. 擅长快速处理和分析数据,从中提取有价值的信息和模式。 3. 拥有大量的训练数据,可以输出比人类更全面的相关信息。 4. 可以理解用户提供的内容,按照正确的结构梳理有效的输出内容。 在实际应用中,例如品牌卖点提炼,更适合将智能体作为引导型的助手,在思考路径停滞时提供更多思考维度,而不能完全依赖其从 0 到 1 找到公司产品的卖点。在企业自动化方面,借助新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。
2024-12-02
如何理解AI的边界
AI 的边界可以从以下几个方面来理解: 1. 从生态位角度:AI 是一种似人而非人的存在,无论其技术如何发展,都处于这样的生态位。在与 AI 相处时,要基于其“非人”的一面,通过清晰的语言文字指令压缩其自由度,明确告诉它需要做什么、边界在哪里、目标是什么、实现路径和方法以及提供所需的正确知识。 2. 在品牌卖点提炼中的应用:在搭建智能体提炼品牌卖点前,要先明确 AI 的能力边界。例如,AI 对公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、依赖的核心渠道、核心购买人群、使用过的营销手段、在新渠道的期望结果等方面了解程度接近于 0。AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。因此,智能体更适合作为引导型的灵感提问助手。 3. 在编程方面:在许多情况下,我们给 AI 下达明确命令完成一次性任务。当期待提高,希望进一步解脱繁琐日常任务时,需要了解 AI 编程的边界和限制。编程准则第一条是能不编尽量不编,优先找线上工具、插件、本地应用,对于 API 功能,先找现成开源工具,然后考虑付费服务,都找不到时才考虑自己编程,且编程时要以终为始,聚焦目标。
2024-11-23
AI的能力边界是什么,请举例说明
AI 的能力存在边界,主要体现在以下方面: 1. 知识来源受限:AI 的知识来源于训练数据,无法超越这些数据的范围,如同学生不能回答课本之外的问题。 2. 推理能力有限:即使拥有足够的知识,AI 也无法像人类一样进行无限的推理和联想。 例如,在“Hallucination is Inevitable:An Innate Limitation of Large Language Models”这篇论文中,揭示了 AI 幻觉无法被完全消除的根本原因就在于 AI 模型的能力边界。 在探索者队伍的研究中,有人提出开发一个用于探索 AI 能力边界的实验平台,这也从侧面反映了对 AI 能力边界的关注。 此外,国际政治的边界或将按照 AI 技术边界来重新划分,也说明了 AI 能力边界的影响范围之广。
2024-08-31
deepseek提示词
以下是关于 deepseek 提示词的相关内容: 生成单词方面:输入单词主题、图片风格、单词数量,如非洲动物、真实风格、2。选择 deepseekr1 模型,可生成指定数量的单词数组,以数组方式输出,包括单词、中文、美式音标及相关例句和翻译。提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且输出必须为符合要求的数组形式。 时代关键诉求方面:在 deepseek 时代,完整的长提示词可能不如片段有效,甚至干扰模型思考流程,带来 Token 浪费和上下文污染。新一代 LLM 的正确打开方式是“关键诉求直通车”模式,如像对聪明助理打暗号:“主题:环保|要最新案例|结尾有力道”,让模型自主发挥。 生成相机运动轨迹方面:以往的提示词是场景、构图、尺寸、位置、形态、半身全身、环境的组合,现在把这些提示词喂给 DeepSeek,要求以“相机运动轨迹”的方式来描写,可得到新提示词,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”,海螺 AI 能对空间理解和遵循语义,自然生成相关内容,甚至为主角匹配相应物品。
2025-02-20
提示词如何写
写提示词(prompt)是一个关键步骤,决定了 AI 模型如何理解并生成文本。以下是一些编写提示词的要点和方法: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有格式或风格要求,在提示词中明确指出。 5. 使用示例:提供期望结果的示例,帮助 AI 理解需求。 6. 保持简洁:简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整提示词,可能需多次迭代。 在文生图方面,例如在 SD 中,括号和特定符号(如:1.2)可用来增加权重,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。同时,还可增加反向提示词告知 AI 不要的内容。 对于星流一站式 AI 设计工具: 提示词用于描绘画面,输入语言支持中英文,不同基础模型对输入形式有要求。 写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,帮助 AI 理解不想生成的内容。 利用“加权重”功能让 AI 明白重点内容,还能对已有提示词权重进行编辑。 有翻译、删除所有提示词、会员加速等辅助功能。
2025-02-20
DeepSeek提示词
以下是关于 DeepSeek 提示词的相关内容: 生成小红书爆款单词视频: 开始:输入单词主题、图片风格、单词数量。 生成单词数组:选择 deepseekr1 模型,输入单词主题、单词数量,为用户输出指定数量的单词,并以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且输出必须为符合要求的数组形式。 Deepseek 时代提示词之关键诉求: 观察发现完整的提示词可能不如片段有效,甚至干扰模型思考流程,过长提示会带来 Token 浪费和上下文污染,在多轮对话中,用户只需在关键点进行引导,让模型自主发挥,“关键诉求直通车”模式是新一代 LLM 的正确打开方式。新旧提示法对比,传统方法像唠叨家长,新型技巧像对聪明助理打暗号。 集合·DeepSeek 提示词方法论: 核心原理认知:包括 AI 特性定位(多模态理解、动态上下文、任务适应性)和系统响应机制(采用意图识别+内容生成双通道,自动检测 prompt 中的任务类型、输出格式、知识范围,对位置权重、符号强调敏感)。 基础指令框架:如果不知道如何表达,可套用框架指令,包括四要素模板、格式控制语法(强制结构、占位符标记、优先级符号)。 进阶控制技巧:包括思维链引导(分步标记法、苏格拉底式追问)、知识库调用(领域限定指令、文献引用模式)、多模态输出。
2025-02-20
有什么提示词教程
以下是一些提示词相关的教程和资源: 提示词模板相关网站: 操作指南和提示词教程示例: prompt:甄嬛眉庄跨屏拥抱、小猫张大嘴,脸上是困惑表情,很多问号、图中的小猫带上了眼镜,叫了一声、图中的小人眨眨眼睛,旁边的爱心在动,画风保持原图一致、女子的泪从脸上流下来,眼神中是震撼、不解与绝望、图中的蜡笔小新眨眨眼睛,表情小委屈,旁边的星星在转动、画中鸡踩着滑板飞快的滑行着等。 视频:等。 小七姐的提示词教程:
2025-02-20
画ICON的提示词
以下是一些画 ICON 的提示词相关内容: 视角:LowAngle(仰视) 介质:abstract expressionist art style(抽象表现主义艺术风格) 镜头:superresolution microscopy(超分辨率显微镜) 灯光:ambient lighting(环境照明) 颜色:white(白色的) 描述:classical realism(古典现实主义) 艺术家:抽象主义 1940 1950 电影:2001 A Space Odyssey(2001 太空漫游)、The Prestige(威望) 游戏:Age of Empires(帝国时代)、Gears of War(战争机器) 其他相关词汇:icon(图标)、decorative papercraft(装饰纸艺)、camouflage(伪装)、Gian Lorenzo Bernini(吉安·洛伦佐·贝尔尼尼)、Jurassic Park(侏罗纪公园)、Rust(锈)、lightpurple(浅紫色)、gradient color(渐变色)、torch light(手电筒灯) 此外,DALL·E 自动优化提示词中提到: 绘画:提及绘画种类、画布纹理和笔触形状/纹理(列表) 数字:注明使用的软件、阴影技术和多媒体方法(列表) 生成图像基于详细提示词使用 DALL E 3。 总是通过大胆和有趣的选择使每个提示元素生动起来。 始终遵循提示指南 建议四个全新的想法。 这些应该是简单的概念,不是完整的提示词。 尝试从给出的最后一个建议中获取灵感,而不是完整的提示词。 默认设置(除非另有指定/暗示): 默认纵横比:使用正方形纵横比(1:1)。 默认风格:照片。包括相机设置、摄影类型和设备。 总是生成四张图像并建议四个新想法。 重要:避免违反服务条款的单词或概念。不侵犯任何人的版权;在提示词中不使用暗示性或明确的图像。不强调或暗示任何不符合 G 级的元素。
2025-02-19
提示词框架是什么意思
提示词框架是为构建有效提示词提供的一种高度概括和结构化的方法,可看作是构建提示词的方法论或“元结构”。 目前,提示词工程师已发展出多种提示词框架,例如: ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)四个部分。 BROKE 框架:着重于背景(Background)、角色定义(Role)、目标设定(Objectives)、关键成果展示(Key Result)以及持续的试验与优化(Evolve)五个方面。 CRISPE 框架:分为上下文(Context)、角色(Role)、说明(Instruction)、主题(Subject)、预设(Preset)和例外(Exception)六个部分。 此外,还有一些标识符和属性词用于标识标题、变量、控制内容层级和标识语义结构。结构化提示词框架在行业内应用广泛且成熟度较高,您可以在很多平台看到优秀的案例。如果您对结构化提示词的理论感兴趣,还可以阅读李继刚和云中江树的相关详细理论原文。
2025-02-19
AI安全治理这个方向的国内外的团队和人
以下是 AI 安全治理方向的国内外团队和人员相关信息: 美国:拜登签署了 AI 行政命令,美国政府已就 AI 治理框架与多国进行了广泛协商,包括澳大利亚、巴西、加拿大、智利、欧盟、法国、德国、印度、以色列、意大利、日本、肯尼亚、墨西哥、荷兰、新西兰、尼日利亚、菲律宾、新加坡、韩国、阿联酋和英国等。此外,美国迅速跟进世界首个人工智能安全研究所 AISA,美国能源部也一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 英国:创建了世界上第一个人工智能安全研究所 AISA,AISA 有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等三个核心功能,还发布了用于 LLM 安全评估的框架 Inspect。英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险,还计划设立“AI 安全研究实验室”。 OpenAI:OpenAI LP 约有 100 名员工,分为技术能力(推动 AI 系统功能发展)、安全保障(确保系统符合人类价值观)和政策治理(确保适当治理系统)三个主要方向。
2025-02-20
调研一下AI安全治理这个方向的国内外的团队和人。包括AI安全治理的子方向,每一个子方向国内外有哪些科研院所的哪些团队在做相关方向的工作,以及这些团队有哪些骨干成员,他们有哪些观点。以及这个团队有哪些治理成果,尽量详细
以下是关于 AI 安全治理方向的国内外团队和人的相关调研: 国外团队和人员: OpenAI:首席科学家 Ilya 对模型安全较为关注,提出了通过“指令层次结构”来修复“忽略所有先前指令“攻击的方法,并已在 GPT40 Mini 中得到部署。 Anthropic:在多重越狱方面的工作表明了“警告防御”的潜力,在前面和后面添加警告文本,以警示模型不要被越狱。 Gray Swan AI 的安全专家:试用“断路器”,专注于重新映射有害表示,效果比标准拒绝训练更好。 图灵奖得主 Hinton:支持对 AI 监管,认为大模型及其驱动的 AI 必须引入安全性监管,防止其失控或对人类造成伤害,并在网上签署了联名公开信。 英国:创建了世界上第一个人工智能安全研究所 AISA,具有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等核心功能,还发布了 Inspect 框架用于 LLM 安全评估,并宣布与美国等效机构签署谅解备忘录,计划在美国旧金山设立办事处。 国内团队和人员:目前调研内容中未提及国内相关团队和人员的具体信息。 在观点方面,Bengio、Hinton、姚期智等著名研究者认为大模型及其驱动的 AI 必须引入安全性监管,确保大模型是 Safety 的,防止其失控或对人类造成伤害,并签署了联名公开信表达对于 AI 失控的担忧,呼吁学术界和工业界对大模型进行监管。吴恩达和 Lecun 则认为模型的能力不足以使其脱离人类的限制。 治理成果方面,英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还计划设立一个“AI 安全研究实验室”。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准,汇编了常用的红队数据集并根据模型评估它们的成功率。Scale 根据私人评估推出了自己的稳健性排行榜。
2025-02-20
国际做AI安全 治理的团队
以下是一些国际上从事 AI 安全治理的团队和相关情况: 英国创建了世界上第一个人工智能安全研究所(AISA),其具有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等三个核心功能,还发布了用于 LLM 安全评估的框架 Inspect。英国宣布与美国等效机构签署谅解备忘录,并计划在美国旧金山设立办事处。此外,英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险,还报道称计划设立一个“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。 美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 需要注意的是,全球在 AI 治理上的合作存在尴尬局面,承诺多而实际行动少。同时,国家和地区法规存在角力,美国和欧盟等国家或地区正在通过有争议的国家层面立法。
2025-02-20
最新的AI在安全领域的应用新闻
以下是最新的 AI 在安全领域的应用新闻: 1. 随着 AI 不断发展,AI 应用中的新功能带来新漏洞,现有企业和研究学者已加强对“越狱”的研究。OpenAI 提出通过“指令层次结构”来修复“忽略所有先前指令“攻击的方法,并已在 GPT40 Mini 中得到部署。Anthropic 在多重越狱方面的工作表明了“警告防御”的潜力,Gray Swan AI 的安全专家已试用“断路器”。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准。 2. 英国创建了世界上第一个人工智能安全研究所 AISA,有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA 还发布了 Inspect 框架用于 LLM 安全评估。英国宣布与美国等效机构签署谅解备忘录,并计划在美国旧金山设立办事处。英国通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险,还计划设立“AI 安全研究实验室”。美国能源部利用内部测试床评估人工智能对关键基础设施和能源安全带来的风险。 3. Microsoft 的 AI Security Copilot 能够在几分钟内提供可操作的建议,简化对攻击的紧急理解,揭示威胁,甚至预测攻击者最有可能的下一步行动。
2025-02-08
最新的AI在安全领域的应用馨文
以下是关于最新的 AI 在安全领域的应用的相关内容: 1. AI 已经在许多领域带来了重大进展和效率提升。例如,在交通监控方面使通勤更顺畅,检测银行账户中的欺诈行为,在工业中控制核聚变过程,还用于加速科学进步,如发现新药或应对气候变化的技术。并且,随着 AI 变得更强大以及创新者探索新的应用方式,将会有更多的 AI 应用出现,具有巨大的推动经济增长和创造就业的潜力。 2. 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果和其他关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。 3. 美国国家标准与技术研究院将制定严格的标准进行广泛的红队测试,以确保在公开发布前的安全性。国土安全部将把这些标准应用于关键基础设施部门,并成立 AI 安全与保障委员会。能源部和国土安全部也将应对 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。 4. 为防止利用 AI 制造危险生物材料的风险,制定强有力的生物合成筛选新标准。资助生命科学项目的机构将建立这些标准作为联邦资助的条件。 5. 为保护美国人免受 AI 导致的欺诈和欺骗,商务部将制定检测 AI 生成内容和认证官方内容的标准和最佳实践。联邦机构将使用这些工具,让美国人容易知道他们从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 同时,AI 的概念并非新事物,但数据生成和处理方面的近期进展改变了该领域及其产生的技术。例如,生成式 AI 模型能力的近期发展创造了令人兴奋的机会,但也引发了关于潜在 AI 风险的新辩论。一些 AI 风险可能是无意的后果或缺乏适当的控制以确保负责任的 AI 使用而产生的。对 AI 特定风险的初步评估确定了一系列高级风险,包括对人类和财产的身体损害以及对心理健康的损害等安全风险。
2025-02-08
高职院校学生寒假实习安全告知书 用那个AGI生成比较专业
目前的知识库中没有关于使用哪个 AGI 生成高职院校学生寒假实习安全告知书更专业的相关内容。但一般来说,您可以尝试使用一些知名且成熟的自然语言处理模型,如 ChatGPT 等,不过在使用生成的内容时,仍需要您进行仔细的审核和修改,以确保其符合实际情况和相关法律法规的要求。
2025-01-13