Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请介绍一下deepseek

Answer

DeepSeek 是一家低调但引人关注的大模型公司。其发布了 2360 亿参数的 DeepSeek-V2 模型,该模型具有以下特点:

  • 由 60 位专家参与的混合开源模型。
  • 在数学、编码和推理方面表现出色。
  • 拥有 236B 参数,其中 21B 在生成过程中被激活。
  • 在 MT-Bench 上表现优异,中文能力强且性价比高。

关于 DeepSeek 的详细介绍,您可以通过以下链接获取更多信息:https://xiaohu.ai/p/7468 。此外,还有一篇文章《揭秘 DeepSeek:一个更极致的中国技术理想主义故事》对其进行了深入报道。

Content generated by AI large model, please carefully verify (powered by aily)

References

XiaoHu.AI日报

-提供4K分辨率的人类自由视角视频。-利用该技术将虚拟角色放入场景,实现沉浸式互动。🔗项目地址:http://vcai.mpi-inf.mpg.de/projects/holochar/🔗详细介绍:https://xiaohu.ai/p/74845️⃣🌌DeepSeek发布2360亿参数的DeepSeek-V2:-60位专家混合开源模型,数学、编码和推理表现出色。-236B参数,21B在生成过程中被激活。-在MT-Bench上表现优异,中文能力强且性价比高。🔗详细介绍:https://xiaohu.ai/p/74686️⃣🔍Google Gemini网络安全产品:-检测并防御网络钓鱼攻击。-结合广泛的用户和网络监控发现威胁。-利用AI分析功能生成情报报告。🔗详细:https://xiaohu.ai/p/74607️⃣🚗Wayve获超10亿美元C轮融资:-开发“驾驶GPT”基础模型,实现具身体智能自动驾驶。-使车辆在各种环境中操作,几乎无需人为干预。-使车辆与人类互动、学习并理解人类行为。🔗详细内容:https://xiaohu.ai/p/74538️⃣🩺CURE模型预测治疗结果:-利用300万患者数据进行预训练并针对特定健康状况微调。

XiaoHu.AI日报

-提供4K分辨率的人类自由视角视频。-利用该技术将虚拟角色放入场景,实现沉浸式互动。🔗项目地址:http://vcai.mpi-inf.mpg.de/projects/holochar/🔗详细介绍:https://xiaohu.ai/p/74845️⃣🌌DeepSeek发布2360亿参数的DeepSeek-V2:-60位专家混合开源模型,数学、编码和推理表现出色。-236B参数,21B在生成过程中被激活。-在MT-Bench上表现优异,中文能力强且性价比高。🔗详细介绍:https://xiaohu.ai/p/74686️⃣🔍Google Gemini网络安全产品:-检测并防御网络钓鱼攻击。-结合广泛的用户和网络监控发现威胁。-利用AI分析功能生成情报报告。🔗详细:https://xiaohu.ai/p/74607️⃣🚗Wayve获超10亿美元C轮融资:-开发“驾驶GPT”基础模型,实现具身体智能自动驾驶。-使车辆在各种环境中操作,几乎无需人为干预。-使车辆与人类互动、学习并理解人类行为。🔗详细内容:https://xiaohu.ai/p/74538️⃣🩺CURE模型预测治疗结果:-利用300万患者数据进行预训练并针对特定健康状况微调。

2024 年历史更新(归档)

《[长文深度解析Coze的多Agent模式的实现机制](https://mp.weixin.qq.com/s/8_998tbRd6yuzZwnKR2crA)》来自给我们社区分享过的艾木老师,他深入研究了Coze的多Agent模式机制,针对多Agent跳转不可靠的现象,分析了Coze提供的三种节点跳转模式,包括使用对话模型、独立模型以及自定义模型。通过对《谁是卧底》游戏的节点跳转实例进行解析,揭示了每种模式的应用场景和不足之处。《[揭秘DeepSeek:一个更极致的中国技术理想主义故事](https://mp.weixin.qq.com/s/r9zZaEgqAa_lml_fOEZmjg)》来自暗涌,DeepSeek是一家低调却引人关注的大模型公司,以独特的技术创新在市上崭露头角。他们发布了价格颠覆性的源模型DeepSeek V2,引发了中国大模型战。与其他公司不同,DeepSeek重模型架创新,成功降低成本,受到业内关注。始人梁文锋是技术理想主义者,坚持只做研究探索,希望将中国公司带入全技术创新的浪潮中。《[10万卡集群:通往AGI的新门票](https://mp.weixin.qq.com/s/3VoCKTcxp_FRUsFH-UHbPQ)》来自海外独角兽,各大公司争建设10万集群,投入巨大,但建涉及技术挑和运营问题。文章详细分析数据中心的力问题、并行计算方式、网络、可靠性、成本计算等方面,展示10万GPU集的算力和效率。同时,也出了数据中心设计和网络拓扑结构对于型AI训练集的重要性。

Others are asking
可以简单说下deepseek的原理么
DeepSeek 是中国大模型创业公司中的一员,其背后的量化私募巨头幻方一年前储备了万张 A100 芯片。DeepSeek 发布的 DeepSeek V2 开源模型以低成本的性价比成为行业关注热点,推动了中国大模型价格战的爆发。 DeepSeek 的成功不仅在于技术创新,如提出的 MLA 架构和 DeepSeekMoESparse 结构,还在于其商业模式,即专注于研究和技术创新,而非追求快速商业化。其创始人梁文锋强调了原创式创新的重要性,并讨论了中国 AI 技术创新的未来趋势,以及与硅谷技术社区的差异和交流。 此外,DeepSeek 网站为 https://www.deepseek.com/zh ,使用方便,国内能访问,网页登录便捷,目前完全免费。在生成 2048 游戏代码方面,DeepSeek 对新手较为友好。在 MTBench 上表现优异,中文能力强且性价比高,拥有 2360 亿参数,其中 21B 在生成过程中被激活,60 位专家参与了混合开源模型,在数学、编码和推理方面表现出色。
2025-01-06
DeepSeek-V2是谁开发的
DeepSeekV2 是由 60 位专家混合开发的开源模型。它具有 2360 亿参数,其中 21B 在生成过程中被激活。在 MTBench 上表现优异,中文能力强且性价比高。详细介绍可参考:https://xiaohu.ai/p/7468
2025-01-02
搜索所有deepseek相关资料
以下是关于 DeepSeek 的相关资料: DeepSeek 网址:https://www.deepseek.com/zh 。它很方便,国内能访问,网页登录方便,目前完全免费。新手推荐使用,您只需要获得游戏代码即可。点击开始对话,左边选择代码助手,直接向其许愿。 5 月 7 日的 XiaoHu.AI 日报中提到,DeepSeek 发布 2360 亿参数的 DeepSeekV2,它是 60 位专家混合开源模型,数学、编码和推理表现出色,有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。详细介绍:https://xiaohu.ai/p/7468
2024-12-31
deepseek相关的信息
DeepSeek 相关信息如下: DeepSeek 开源了 ,在 LMSYS Chatbot Arena 排行榜上总排名 11,超过了所有开源模型。 DeepSeek v3 预览版发布,参数量为 685B,磁盘占用 687.9 GB,采用混合专家模型(MoE),有 256 个专家,每个 token 使用 8 个专家。其理解能力提升,知识更新至 2023 年,支持多语言和个性化服务,加强了数据安全和隐私保护,在 BigCodeBenchHard 排名第一。Aider Polyglot 排行榜预览得分 48.4%,排名第二。可通过在线体验。 对于新手,DeepSeek 很方便,国内能访问,网页登录便捷,目前完全免费。网址:https://www.deepseek.com/zh 。在生成 2048 游戏上表现简便准确。
2024-12-29
我想问Deepseek是一个什么AI大模型?能够解决什么问题
DeepSeek 是一家低调但引人关注的大模型公司。他们发布了价格具有颠覆性的源模型 DeepSeek V2,引发了中国大模型之战。创始人梁文锋是技术理想主义者,坚持只做研究探索,希望将中国公司带入全技术创新的浪潮中。 此外,DeepSeek 还发布了开源模型 DeepSeekV3,具备 671B 参数,性能接近顶尖闭源模型 Claude 3.5Sonnet。相比前代,DeepSeekV3 在知识、长文本和数学任务上均有显著提升,生成速度提升至每秒 60 个令牌,API 服务定价调整为每百万输入 tokens 0.5 元,优惠期内维持 0.1 元。模型支持 FP8 训练并已开源权重,旨在缩小开源与闭源模型之间的能力差距,未来将继续扩展功能。 但关于 DeepSeek 能够具体解决哪些问题,目前提供的信息中未明确提及。
2024-12-28
怎么使用Deepseek
DeepSeek 是一款方便实用的工具,以下是关于它的一些使用信息: 1. 网址:https://www.deepseek.com/zh 。国内能访问,网页登录方便,目前完全免费。 2. 使用方法: 点击开始对话,左边选择代码助手。 直接向其表达需求,例如:“我想做个 2048 游戏,请用上 pygame 库”。 3. 代码运行: 获得的游戏代码可以在 Pycharm 中运行。 新建一个文件夹保存代码文件,如在 E 盘新建“python”文件夹。 打开 Pycharm,新建项目并安排好路径。 在路径文件夹里新建放代码文件的文件夹,如“game”。 在新建的文件夹中新建 python 文件或新建文件并添加.py 后缀。 双击新建的文件,将代码复制到右侧文本框。 若运行代码出现红字报错,可能需要安装 pygame 库。点击左下角红色方框,将 DeepSeek 提示的 pip 代码复制粘贴到弹出的界面,回车安装到虚拟环境,再点击“运行”即可。 此外,AIGC Weekly88 中提到 DeepSeek 发布了 DeepSeekV2.5,将基础语言模型和代码模型混合,探索封闭域带来的推理能力提升能否扩展到开放域的基础模型。
2024-12-28
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在选择 GPU 作为 AI 基础设施时,需要考虑多个因素: 训练与推理方面:训练大型 Transformer 模型通常需要在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。许多模型在 NVIDIA H100 上最具成本效益,但获取较难且通常需要长期合作承诺。如今,NVIDIA A100 常用于大多数模型训练。对于大型语言模型(LLM)的推理,可能需要 H100 或 A100,而较小的模型如 Stable Diffusion 则对 VRAM 需求较少,初创公司也会使用 A10、A40、A4000、A5000 和 A6000 甚至 RTX 卡。 内存要求方面:大型 LLM 的参数数量众多,无法由单张卡容纳,需要分布到多个卡中。 硬件支持方面:虽然绝大多数工作负载在 NVIDIA 上运行,但也有公司开始尝试其他供应商,如谷歌 TPU 和英特尔的 Gaudi2,但这些供应商面临的挑战是模型性能高度依赖软件优化。 延迟要求方面:对延迟不太敏感的工作负载可使用功能较弱的 GPU 以降低计算成本,而面向用户的应用程序通常需要高端 GPU 卡来提供实时用户体验。 峰值方面:生成式 AI 公司的需求经常急剧上升,在低端 GPU 上处理峰值通常更容易,若流量来自参与度或留存率较低的用户,以牺牲性能为代价使用较低成本资源也有意义。 此外,算力可以理解为计算能力,在电脑中可直接转化为 GPU,显卡就是 GPU,除了 GPU 外,显存也是重要参数。GPU 是一种专门做图像和图形相关运算工作的微处理器,其诞生是为了给 CPU 减负,生产商主要有 NVIDIA 和 ATI。
2025-01-06
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在 AI 基础设施的考虑因素中,比较 GPU 时需要关注以下几个方面: 训练与推理: 训练 Transformer 模型除了模型权重外,还需要存储 8 字节的数据用于训练。内存 12GB 的典型高端消费级 GPU 几乎无法用于训练 40 亿参数的模型。 训练大型模型通常在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。 许多模型在 NVIDIA H100 上最具成本效益,但截至目前很难找到在 NVIDIA H100 上运行的模型,且通常需要一年以上的长期合作承诺。如今,更多选择在 NVIDIA A100 上运行大多数模型训练,但对于大型集群,仍需要长期承诺。 内存要求: 大型 LLM 的参数数量太多,任何卡都无法容纳,需要分布到多个卡中。 即使进行 LLM 推理,可能也需要 H100 或 A100。但较小的模型(如 Stable Diffusion)需要的 VRAM 要少得多,初创公司也会使用 A10、A40、A4000、A5000 和 A6000,甚至 RTX 卡。 硬件支持: 虽然绝大多数工作负载都在 NVIDIA 上运行,但也有一些公司开始尝试其他供应商,如谷歌 TPU、英特尔的 Gaudi2。 这些供应商面临的挑战是,模型的性能往往高度依赖于芯片的软件优化是否可用,可能需要执行 PoC 才能了解性能。 延迟要求: 对延迟不太敏感的工作负载(如批处理数据处理或不需要交互式 UI 响应的应用程序)可以使用功能较弱的 GPU,能将计算成本降低多达 3 4 倍。 面向用户的应用程序通常需要高端 GPU 卡来提供引人入胜的实时用户体验,优化模型是必要的,以使成本降低到可管理的范围。 峰值: 生成式 AI 公司的需求经常急剧上升,新产品一经发布,请求量每天增加 10 倍,或者每周持续增长 50%的情况并不罕见。 在低端 GPU 上处理这些峰值通常更容易,因为更多的计算节点可能随时可用。如果这种流量来自于参与度较低或留存率较低的用户,那么以牺牲性能为代价使用较低成本的资源也是有意义的。 此外,算力可以直接转化成 GPU,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,显存也是很重要的参数。GPU 的生产商主要有 NVIDIA 和 ATI。GPU 作为一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器,其诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作。
2025-01-06
请介绍下WaytoAGI
WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库。 它涵盖了多个版块,包括 AI 绘画、AI 视频、AI 智能体、AI 3D 等,还通过举办赛事和活动促进大家动手实践,拥有超千万次的访问量,是很多 AI 爱好者知识的源头。 社群的口号是让更多的人因 AI 而强大,有很多学社和共学共建的活动。此外,WaytoAGI 还孵化了离谱村这个千人共创项目,让大家学习和接触 AI 更容易、更感兴趣,参与者不分年龄层,都能通过 AI 工具创作出各种作品。 2023 年 4 月 26 日诞生,2024 年的 2050 年是它的生日庆典。打开“waytoagi.com”即可找到社群。
2025-01-05
介绍一个文稿转换成视频的ai工具
以下为您介绍一些文稿转换成视频的 AI 工具: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果您熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 若您想用 AI 把小说做成视频,可参考以下制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。网址: 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-04
介绍下 AI aPaaS
AI aPaaS 是指像字节 Coze 这样的工具,本质上是“AIfirst aPaaS”。 “aPaaS”意味着 Bot Builder 这类工具与以往的 aPaaS 相同,实现一个应用所需的不同类型代码,如数据、状态、API 调用、逻辑(工作流、事件系统等)、UI 等,通过不同的可视化工具来实现,像数据库建模、服务插件、节点图工具、拖拽式 UI 搭建工具等。生成的并非新应用的完整代码,而是“配置”,所有创建的“应用”都是 aPaaS 本体这个单一应用读取不同配置的运行结果。Bot Builder 只是针对其中部分类型更换了不同的可视化工具,比如针对“数据”类型用 RAG 工具,对“状态”类型用 Token 缓存等工具、对“工作流逻辑”用 Agent 搭建工具,对“UI”用提示词和卡片配置工具。得到的“应用”一部分作为“配置”存储和运行在 Bot Builder 平台自身,一部分作为“配置”存储和运行在各种 Chatbot 平台(比如 ChatGPT)。 “AIfirst”指的是它们不仅在开发应用时使用 AI 辅助或依赖 AI,开发出来的也是 AI 应用(目前主要形态是各平台上的 chatbot)。应用的开发阶段有大模型加持(比如用自然语言描述任务),应用的运行阶段也有大模型支撑(大模型扮演两个角色,最平庸的角色是用大模型的 prompt 调用取代手工编写的代码,更重要的角色是借助大模型做到手工代码做不到的事情)。 像这样的 AI 应用开发平台存在一些问题:aPaaS 这种单一应用的模式,跟内容平台(比如微信公众号、Medium、头条抖音,很多内容平台同样有“开发”需求,比如文章的 HTML 排版和 widget 组合配置,视频中的 AR 效果)、乃至元宇宙平台(比如 Roblox、堡垒之夜、Decentraland、VRChat、元梦之星,这些平台中用户创建的每个 3D 世界,都是应用,传统上都需要专门开发)非常一致或者说一脉相承。缺点是不生成完整、专业的应用代码,跟专业应用开发(包括开发方式、最佳实践、技术生态、抽象积累)割裂,自成体系,重新发明一切,无法灵活深度的混搭和优化。优点是天然趋向把同一个应用在开发阶段的形态和运行阶段的形态统一,类似本帖引用中 Ego 的说法“a game engine that is also a game”,应用自身就是应用开发工具、就是编辑器,开发应用的同时就是在使用应用,开发游戏的时候就是在玩游戏。但 aPaaS 们(含 Bot Builder)显然还远远没实现这种优点,仍然有使用门槛,使用 Bot Builder 过程中的复杂性也远高于使用 Bot。Bot Builder 们只做到“AIfirst”,并没做到“AInative”。引用中的 Ego 是一个“AInative App Builder”的例子,定位是“AInative simulation/game engine and platform”。
2025-01-03
关于AI大模型的发展介绍
AI 大模型的发展具有重要意义和深远影响: 1. 与传统语音技能的差异:语音技能的 NLU 是通过规则、分词策略等训练而成,运作逻辑可观测,具有 ifelse 式逻辑性;而大模型凭借海量数据在向量空间中学习知识关联性,运作逻辑难以观测,脱离了 ifelse 层面。 2. 带来的变革量级:汪华老师认为此次 AI 变革 100%能达到与移动互联网同级,50%可能发展至与蒸汽机出现同量级,能否到达 AGI 阶段尚不明确。 3. 背景和趋势:随着大模型技术成熟和规模增大,为 AI Agent 提供强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。 4. 整体架构: 基础层:为大模型提供硬件支撑和数据支持,如 A100、数据服务器等。 数据层:包括企业根据自身特性维护的静态知识库和动态三方数据集。 模型层:有 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型,训练数据为图文或声音等多模态数据集)。 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。
2024-12-31
和Upscayl软件一样好用的软件推荐一下
以下是一些和 Upscayl 软件一样好用的软件推荐: :这是一个功能强大的开源简历生成器,拥有简洁美观的 UI 设计,并支持导入与解析 PDF 简历文件,能实时更新简历数据,帮助您快速撰写出清晰直观的个人简历。 :可用于二维码设计,能给二维码添加各种图案、文字、图像、更改背景颜色等操作。 :微软开源的全新开发工具,在 Windows 系统中内置了可视化控制面板。 :一款可视化爬虫软件。使用图形化界面,无代码设计和执行爬虫任务。开发者只需在网页上选择爬取内容,并根据提示框操作,即可完成爬虫设计和执行。 :开源的多功能 GUI 网络安全爬虫工具,专为网络安全专业人员设计,目前支持 Windows 和 Linux 操作系统。 :颜值颇高的 HTTP 调试工具,可以用它来编写 API 接口请求、完善 API 描述文档、测试服务器响应、生成客户端代码等工作,并支持多个团队成员实时协作。 :开源的数据可视化分析神器,操作简单易上手,开箱即用。
2025-01-06
请给我推荐一些AI工具配上相关的AI培训视频。同时分析一下每个AI工具的使用场景,优势和缺点以及相似的工具推荐。要求这些AI工具适用于办公环境生产环境
以下为适用于办公环境生产环境的一些 AI 工具推荐,并对其使用场景、优势、缺点及相似工具进行分析: Keep: 使用场景:提供全面的健身解决方案,适用于个人健身计划制定和跟踪。 优势:中国最大的健身平台,资源丰富,能满足多种健身需求。 缺点:可能存在广告过多,部分功能需付费。 相似工具:Fiture Fiture: 使用场景:集硬件、课程内容、教练和社区于一体,适合追求综合健身体验的用户。 优势:由核心 AI 技术打造,提供一体化服务。 缺点:硬件设备可能价格较高。 相似工具:Keep Fitness AI: 使用场景:专注于利用人工智能进行锻炼,增强力量和速度。 优势:针对性强,对力量和速度训练有特定帮助。 缺点:功能相对较单一。 相似工具:暂无明确相似工具。 Planfit: 使用场景:提供健身房家庭训练与 AI 健身计划,适合在家健身的用户。 优势:AI 教练基于大量数据和 ChatGPT 实时提供指导。 缺点:可能对网络要求较高。 相似工具:暂无明确相似工具。 腾讯文档分类功能: 使用场景:自动分类办公文件,方便文件管理。 优势:提高文件管理效率,与腾讯文档集成方便。 缺点:分类准确性可能受文件内容复杂性影响。 相似工具:暂无明确相似工具。 英语流利说纠错功能: 使用场景:帮助语言学习者纠正发音、语法等错误。 优势:针对性纠错,有助于提高语言水平。 缺点:可能对某些特定语言习惯或方言的适应性不足。 相似工具:暂无明确相似工具。 下厨房口味调整功能: 使用场景:根据用户反馈调整菜谱口味。 优势:方便用户优化烹饪效果。 缺点:口味调整的精准度可能有限。 相似工具:暂无明确相似工具。 美丽修行定制方案功能: 使用场景:根据用户肤质定制护肤方案。 优势:个性化护肤推荐。 缺点:对肤质判断的准确性依赖用户输入的信息。 相似工具:暂无明确相似工具。 以上是部分适用于办公和生产环境的 AI 工具推荐及分析,您可以根据具体需求选择使用。
2025-01-06
罗列一下中国国内能用的,好用的AI网站和工具
以下是中国国内一些好用的 AI 网站和工具: 1. 墨刀 AI:设计工具。 2. 无限画:图像生成。 3. autoDL 云服务租用:Agent。 4. 百度 Chat:AI ChatBots。 5. 360AI 搜索。 6. AIbot ai 工具集:导航网站。 7. 创客贴 AI:设计工具。 8. MasterGo:设计工具。 9. 美图设计室:图像编辑。 10. 魔搭社区 阿里达摩院:AI 训练模型。 11. 即时 AI 设计:设计工具。 12. Boardmix 博思 AI 白板:PPT。 13. 百度飞桨 AI Studio:AI 学习。 14. 字节扣子。 15. 提示工程指南:Prompts。 16. toolsdar:导航网站。 17. 同花顺问财:金融。 18. 即梦 AI(剪映):其他视频生成。 19. 可灵 AI:其他视频生成。 20. 360 快剪辑:视频编辑。 21. Dify.ai:Agent。 22. Vast(算力)。 23. 图虫网:AI 摄影作品销售平台。 24. 网易云音乐音乐人平台:AI 音乐作品发布平台。 25. 好好住 APP:AI 家居用品推荐平台。 26. 东方财富网投资分析工具:AI 金融投资分析平台。
2025-01-04
分析一下a16z 的ai top100榜单
以下是对 a16z 的 AI top100 榜单的分析: A16Z 的 AI top100 榜单聚焦生成式 AI 应用。自 ChatGPT 将生成式 AI 引入公众视野以来,已涌现出成千上万面向消费者的相关产品。 在 AI 陪伴方面,它已成为生成式 AI 的主流应用场景之一。例如,Character.AI 在网页端和移动端榜单上表现出色。网页端有八家 AI 陪伴公司进入榜单,移动端有两家。其中,多数产品自诩“无限制”,用户可进行不受限的对话或互动,且访问主要通过移动网页,平均 75%的流量来自移动设备。对于有移动应用的陪伴产品,用户参与度高,如 Character.AI 每位用户平均每月会话次数达 298 次,Poly.AI 为 74 次。 时隔六个月更新分析,超过 40%的公司是首次出现在榜单上。与六个月前相比,有 30%的新公司。名次进步最大的是 Suno,从第 36 名到第 5 名。移动端最多的应用是图像和视频编辑,占 22%。Luzia 服务西班牙语用户值得关注。字节多款应用上榜,包括 Coze、豆包、CiCi、醒图、Gauth。美学和约会应用开始增加,为用户提供相关建议。此外,Discord 流量值得关注,相当多的应用在其平台完成 PMF 验证。 原文链接:https://a16z.com/100genaiapps/ 作者:A16Z Olivia Moore 发布时间:2024.03.13 去年 9 月的报告:
2025-01-02
现在智算非常火热,大家都在建立智算中心,提供大量的算力,请问一下,这些算力,都是哪些行业,哪些企业在消耗这些算力?
目前消耗大量算力的行业和企业主要包括以下方面: 1. 科技巨头:如 Google 拥有大量的 GPU 和 TPU 算力,用于复杂的推理任务和模型训练。 2. 云计算公司:例如 Amazon 和 Microsoft,其 AI 云计算收入主要来自模型托管。 3. 从事 AI 研发的公司:像 xAI 计划用十万块 H100 连成巨大集群,OpenAI 拉上微软打造算力中心 StarGate。 4. 特定领域的企业:如 Apple 利用自身优势发展边缘和远端混合的组合模型。 对于小公司而言,直接参与基础设施建设机会较小,但为当地企业提供 AI 训练的算力支持,并配备服务团队帮助整理知识、寻找业务场景、做垂直训练和微调等,可能存在一定机会。
2025-01-02
我现在想学习使用AI知识应用在生活知及工作上,请计划一下我应该怎么学习
以下是为您制定的学习将 AI 知识应用在生活及工作中的计划: 一、了解 AI 基本概念 1. 阅读相关入门文章,熟悉 AI 的术语、基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。了解 AI 的历史、当前的应用和未来的发展趋势。 2. 建议阅读「」部分。 二、学习编程语言 从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 三、尝试使用 AI 工具和平台 1. 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 2. 探索一些面向大众的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 四、学习 AI 基础知识 1. 深入了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 2. 学习 AI 在教育、医疗、金融等领域的应用案例。 五、参与 AI 相关的实践项目 1. 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 2. 尝试利用 AI 技术解决生活和工作中的实际问题,培养动手能力。 六、选择感兴趣的模块深入学习 AI 领域广泛,您可以根据自己的兴趣选择特定的模块进行深入学习,比如图像、音乐、视频等。同时,一定要掌握提示词的技巧,它上手容易且很有用。 七、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 八、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 九、利用 AI 辅助学习 1. 英语学习: 利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错。 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正。 使用自适应学习平台(如 Duolingo)获取个性化的学习计划和内容。 利用智能对话机器人(如 ChatGPT)进行英语会话练习。 2. 数学学习: 使用自适应学习系统(如 Khan Academy)获取个性化的学习路径和练习题。 利用智能题库和作业辅助工具(如 Photomath)获取数学问题的解答和解题步骤。 使用虚拟教学助手(如 Socratic)解答数学问题、获取教学视频和答疑服务。 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目。 通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行学习,并将 AI 知识应用到生活和工作中。
2024-12-30