直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

介绍下 AI aPaaS

回答

AI aPaaS 是指像字节 Coze 这样的工具,本质上是“AI-first aPaaS”。

“aPaaS”意味着 Bot Builder 这类工具与以往的 aPaaS 相同,实现一个应用所需的不同类型代码,如数据、状态、API 调用、逻辑(工作流、事件系统等)、UI 等,通过不同的可视化工具来实现,像数据库建模、服务插件、节点图工具、拖拽式 UI 搭建工具等。生成的并非新应用的完整代码,而是“配置”,所有创建的“应用”都是 aPaaS 本体这个单一应用读取不同配置的运行结果。Bot Builder 只是针对其中部分类型更换了不同的可视化工具,比如针对“数据”类型用 RAG 工具,对“状态”类型用 Token 缓存等工具、对“工作流逻辑”用 Agent 搭建工具,对“UI”用提示词和卡片配置工具。得到的“应用”一部分作为“配置”存储和运行在 Bot Builder 平台自身,一部分作为“配置”存储和运行在各种 Chatbot 平台(比如 ChatGPT)。

“AI-first”指的是它们不仅在开发应用时使用 AI 辅助或依赖 AI,开发出来的也是 AI 应用(目前主要形态是各平台上的 chatbot)。应用的开发阶段有大模型加持(比如用自然语言描述任务),应用的运行阶段也有大模型支撑(大模型扮演两个角色,最平庸的角色是用大模型的 prompt 调用取代手工编写的代码,更重要的角色是借助大模型做到手工代码做不到的事情)。

像这样的 AI 应用开发平台存在一些问题:aPaaS 这种单一应用的模式,跟内容平台(比如微信公众号、Medium、头条抖音,很多内容平台同样有“开发”需求,比如文章的 HTML 排版和 widget 组合配置,视频中的 AR 效果)、乃至元宇宙平台(比如 Roblox、堡垒之夜、Decentraland、VRChat、元梦之星,这些平台中用户创建的每个 3D 世界,都是应用,传统上都需要专门开发)非常一致或者说一脉相承。缺点是不生成完整、专业的应用代码,跟专业应用开发(包括开发方式、最佳实践、技术生态、抽象积累)割裂,自成体系,重新发明一切,无法灵活深度的混搭和优化。优点是天然趋向把同一个应用在开发阶段的形态和运行阶段的形态统一,类似本帖引用中 Ego 的说法“a game engine that is also a game”,应用自身就是应用开发工具、就是编辑器,开发应用的同时就是在使用应用,开发游戏的时候就是在玩游戏。但 aPaaS 们(含 Bot Builder)显然还远远没实现这种优点,仍然有使用门槛,使用 Bot Builder 过程中的复杂性也远高于使用 Bot。Bot Builder 们只做到“AI-first”,并没做到“AI-native”。引用中的 Ego 是一个“AI-native App Builder”的例子,定位是“AI-native simulation/game engine and platform”。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

观点:像字节 Coze 这样的工具本质上是「AI-first aPaaS」

像字节Coze这样的工具本质上是「AI-first aPaaS」。「aPaaS」是指这些Bot Builder完完全全就是以前的aPaaS,把实现一个应用所需的不同类型代码——数据、状态、API调用、逻辑(工作流、事件系统等)、UI,用不同的可视化工具来实现,比如数据库建模、服务插件、节点图工具、拖拽式UI搭建工具。且生成的不是新应用的完整代码,而是「配置」,所有创建出来的「应用」都是aPaaS本体这个单一应用读取不同配置的运行结果。Bot Builder只是对其中部分类型,换了不同的可视化工具,比如针对「数据」类型用RAG工具,对「状态」类型用Token缓存等工具、对「工作流逻辑」用Agent搭建工具,对「UI」用提示词和卡片配置工具。得到的「应用」一部分作为「配置」存储和运行在Bot Builder平台自身,一部分作为「配置」存储和运行在各种Chatbot平台(比如ChatGPT)。「AI-first」是指它们不但开发应用时用AI辅助或依赖AI,开发出来的也是AI应用(目前主要形态是各平台上的chatbot)。应用的开发阶段有大模型加持(比如用自然语言描述任务),应用的运行阶段也有大模型支撑(大模型扮演两个角色,最平庸的角色是用大模型的prompt调用取代手工编写的代码,更重要的角色是借助大模型做到手工代码做不到的事情)。

观点:像字节 Coze 这样的工具本质上是「AI-first aPaaS」

像字节Coze这样的工具本质上是「AI-first aPaaS」。「aPaaS」是指这些Bot Builder完完全全就是以前的aPaaS,把实现一个应用所需的不同类型代码——数据、状态、API调用、逻辑(工作流、事件系统等)、UI,用不同的可视化工具来实现,比如数据库建模、服务插件、节点图工具、拖拽式UI搭建工具。且生成的不是新应用的完整代码,而是「配置」,所有创建出来的「应用」都是aPaaS本体这个单一应用读取不同配置的运行结果。Bot Builder只是对其中部分类型,换了不同的可视化工具,比如针对「数据」类型用RAG工具,对「状态」类型用Token缓存等工具、对「工作流逻辑」用Agent搭建工具,对「UI」用提示词和卡片配置工具。得到的「应用」一部分作为「配置」存储和运行在Bot Builder平台自身,一部分作为「配置」存储和运行在各种Chatbot平台(比如ChatGPT)。「AI-first」是指它们不但开发应用时用AI辅助或依赖AI,开发出来的也是AI应用(目前主要形态是各平台上的chatbot)。应用的开发阶段有大模型加持(比如用自然语言描述任务),应用的运行阶段也有大模型支撑(大模型扮演两个角色,最平庸的角色是用大模型的prompt调用取代手工编写的代码,更重要的角色是借助大模型做到手工代码做不到的事情)。

观点:像字节 Coze 这样的工具本质上是「AI-first aPaaS」

像这样的AI应用开发平台,存在的问题是:aPaaS这种单一应用的模式,跟内容平台(比如微信公众号、Medium、头条抖音,很多内容平台同样有「开发」需求,比如文章的HTML排版和widget组合配置,视频中的AR效果)、乃至元宇宙平台(比如Roblox、堡垒之夜、Decentraland、VRChat、元梦之星,这些平台中用户创建的每个3D世界,都是应用,传统上都需要专门开发)是非常一致或者说一脉相承的。缺点是,不生成完整、专业的应用代码,跟专业应用开发(包括开发方式、最佳实践、技术生态、抽象积累)割裂,自成体系,重新发明一切,无法灵活深度的混搭和优化(我以前写的《「全码」通用搭建》里有讨论过)。优点是,天然趋向把同一个应用在开发阶段的形态和运行阶段的形态统一,类似本帖引用中Ego的说法「a game engine that is also a game」,应用自身就是应用开发工具、就是编辑器,开发应用的同时就是在使用应用,开发游戏的时候就是在玩游戏。aPaaS们(含Bot Builder)显然还远远没实现这种优点,仍然有使用门槛,使用Bot Builder过程中的复杂性也远高于使用Bot。Bot Builder们只做到「AI-first」,并没做到「AI-native」。引用中的Ego是一个「AI-native App Builder」的例子。定位是「AI-native simulation/game engine and platform」

其他人在问
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
介绍下即梦3.0的模型,为什么很多人说它好用
即梦 3.0 模型具有以下显著特点,这也是很多人认为它好用的原因: 1. 超真实: 质感提升:图片不再有磨皮过度的“假脸感”、“油腻感”,皮肤纹理、物品材质更自然。 情绪到位:人物表情不再僵硬或眼神空洞,能表现出更细腻、更有感染力的情绪,如开心、严肃、沮丧落泪等。 2. 超高清:默认能生成 1K 分辨率图片,还支持到 2K,画面更清晰,结构更准确。 3. 超专业: 影像大师:能更精准地理解电影类型(如恐怖片、爱情片、公路片)和镜头语言(如大特写、鱼眼镜头、俯视视角)。 动漫高手:动漫风格更多元(日漫、国漫、皮克斯风等),细节更丰富,色彩更统一,告别“抠图感”。 文字设计:不仅能准确生成大字、小字,还支持超多字体(细体、粗体、可爱体、毛笔字、涂鸦体等),排版更专业、更有设计感。 4. 超智能:能更好地理解自然语言描述,简单的指令也能出好图,支持“一句话 P 图”的自然语言编辑能力。 此外,即梦 3.0 在文字处理方面表现出色,不仅提升了大字的准确性、设计感和丰富度,还大幅解决了小字的稳定性问题。相比之下,在中文场景中,其他模型可能存在一些局限性,如 GPT4o 可能存在不识别某些中文字、难以生成特别设计感的字体等问题。而即梦 3.0 作为中文 AI 绘图模型,在中文的表现性上对国内用户更有用且友好。
2025-04-14
waytoagi 简单介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台: 旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI 融合了独特的设计元素: 选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。 标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,寓意优雅与智慧。 选用简洁现代的非衬线字体,强调信息传达的清晰度和直接性。 此外,WaytoAGI 里有个离谱村: 是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易、更感兴趣。 参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。 离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14