Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

特征融合技术

Answer

特征融合技术: 图像融合是将两个或多个图像合成为一个新的图像,以获得比原始图像更全面和丰富的信息。可通过像素级融合、特征级融合和决策级融合等技术实现,在提高图像质量、增加信息量、遥感图像处理及计算机视觉和机器人技术中有多种用途。相关算法有小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 目标检测是在图像或视频中准确地识别和定位特定对象,随着多模态数据的广泛应用,将不同模态的信息融合可提高其性能和鲁棒性。相关算法有基于深度学习的(如 R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD 等)和基于传统计算机视觉技术的(如 HOG、SIFT、SURF 等)。 图像融合和目标检测都是计算机视觉领域的重要技术,在多个领域有广泛应用前景和研究价值。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:图像融合和目标检测是什么

Q:图像融合和目标检测是什么?大致的原理是什么?有哪些相关的算法?图像融合是将两个或多个图像合成为一个新的图像,以获得比原始图像更全面和丰富的信息。它可以通过不同的技术实现,如像素级融合、特征级融合和决策级融合。图像融合在实际应用中有多种用途,包括提高图像质量、增加图像信息量、遥感图像处理以及计算机视觉和机器人技术中的应用。目标检测是计算机视觉领域中的一个重要任务,其目标是在图像或视频中准确地识别和定位特定对象。随着多模态数据的广泛应用,如图像、文本、语音等,将不同模态的信息进行融合可以进一步提高目标检测的性能和鲁棒性。因此,图像融合和目标检测都是计算机视觉领域中重要的技术,它们在多个领域都有广泛的应用前景和研究价值。图像融合和目标检测的大致原理分别是将多个不同的图像合并成一个新的图像以获得更准确、更全面的信息和在图像中找到特定的目标并对其进行定位和识别。图像融合的相关算法有:小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。目标检测的相关算法有:基于深度学习的目标检测算法(如R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD等)、基于传统计算机视觉技术的目标检测算法(如HOG、SIFT、SURF等)。欢迎关注我们的公众号,或加入飞书群:

大雨:简单易懂的向量数据库解析:你需要了解的一切

在发现维度高度相关时,可以采用以下策略来处理:特征选择:通过统计测试(如皮尔森相关系数检测)来识别高度相关的特征,并从模型中移除一些。特征抽取:使用主成分分析(PCA)等方法将相关特征合并成少数几个独立的特征。正则化技术:在模型训练过程中应用正则化方法(如L1、L2正则化),可以减少冗余特征的影响。通过这些方式,可以优化特征集,避免由于维度相近导致的问题,从而提高模型的准确性和解释性。这在任何数据驱动的系统中都是至关重要的,尤其是在依赖精确特征工程的推荐系统中。前面的内容视图用科普的视角解释向量和向量数据库,和要解决的问题。下面我们开始进入向量数据库的正题。

ComfyUI BrushNet

1.掩码和下采样:模型接收一个掩码(Mask),用来指示图像中的缺失区域。这个掩码被下采样(Downsample)以匹配模型潜在空间的大小。2.掩蔽图像与VAE编码器:实际的图像在缺失部分被掩蔽,然后传入变分自编码器(VAE Encoder)以使潜在空间的分布对齐。3.噪声潜在空间:在处理过程中,将噪声加入潜在空间(Noisy Latent)以增加模型输出的多样性。4.BrushNet:将掩蔽图像的潜在表示、噪声潜在空间和下采样掩码结合起来,作为BrushNet的输入。BrushNet用于提取特征。5.Frozen UNet:BrushNet提取的特征通过零卷积(Zero Convolution)块逐层加到预训练的UNet中。下面详细说下这个.6.去噪和图像生成:去噪过程完成后,通过解码器(Dec)生成图像。7.模糊掩码和合成:生成的图像和掩蔽图像通过模糊掩码(Blurred Mask)进行混合,以创建最终的修复图像。8.混合:使用混合技术将生成的图像与原始掩蔽图像结合起来,完成修复过程。在图像处理中,"Frozen UNet"通常指的是一个已经预训练好并在使用过程中保持固定不变的UNet模型。这意味着在进行特定任务(如图像分割或修复)时,模型的权重不会更新,从而可以利用UNet强大的图像处理能力,而无需重新训练模型。这种做法常用于需要快速且高效地处理图像的场景,尤其是当新数据不足以进行有效训练或者训练成本过高时。

Others are asking
文本与图像跨模态特征融合技术有哪些
文本与图像跨模态特征融合技术主要包括以下几种: 1. 图像融合方面: 像素级融合:将多个图像的像素直接进行组合。 特征级融合:对图像的特征进行融合。 决策级融合:基于不同图像的决策结果进行融合。 相关算法:小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 2. 目标检测方面: 基于深度学习的目标检测算法:如 RCNN、Fast RCNN、Faster RCNN、YOLO、SSD 等。 基于传统计算机视觉技术的目标检测算法:如 HOG、SIFT、SURF 等。 3. 在 Stable Diffusion 中: 通过 Attention 机制将文本与图片的特征对应起来,例如两个输入先经过 Attention 机制输出新的 Latent Feature,再将新输出的 Latent Feature 与输入的 Context Embedding 做 Attention 机制。 Spatial Transformer 模块在图片对应的位置上融合语义信息,是将文本与图像结合的“万金油”模块。 CrossAttention 模块有助于在输入文本和生成图片之间建立联系,将图像和文本信息关联起来,用于将文本中的情感元素传递到生成图片中。 4. 多模态融合方法: 最初常采用预训练的目标检测器,如 ViLBERT、VisualBERT 和 UnicoderVL,通过提取图像特征和执行交叉模态预训练任务。 随着 ViT 的出现和普及,更多方法利用 ViT 作为图像编码器,强调大规模预训练,例如 Flamingo。 近期向多模态 LLMs 发展,如 LLaVA 和 MiniGPT4,通过融合视觉和语言信息,能够更有效地完成视觉理解相关的任务。
2025-01-01
超融合架构与AI
超融合架构与 AI 相关的知识如下: 在融合 RL(强化学习)与 LLM(大型语言模型)思想方面: AI 本质涉及多种缩放规律(scaling law),当前较好的模型规模在 10 的 25 到 26 次方 FLOPs,算力是必要条件。 需满足可扩展性(scalability)和通用性(generality)的架构,如 Transformer 在已知 token 空间符合部分条件,但在更通用场景存在不足。 未来可能会利用用户数据源的缩放规律,对齐(alignment)问题存在缩放规律且可解决,数据瓶颈在文本模态上 2024 年可能出现,多模态数据引入可推迟 1 2 年。 在面向智能的架构方面: 包括为 Machine Learning 优化的高性能芯片,如 Nvidia 的 H100 Tensor Core GPU 和 Google 的 TPU,内置多计算核心和高带宽内存。 能完全发挥硬件效率的系统软件,如 Nvidia 推出的 CUDA。 用于训练和推理的分布式计算框架,可跨多个节点扩展模型训练操作。 数据和元数据管理系统,提供可靠、统一和可重复使用的管理通道。 极低延迟的服务基础设施,支持快速执行基于实时数据和上下文相关的智能操作。 Machine Learning 持续集成平台(MLOps)、模型解释器、质保和可视化测试工具,可大规模监测、调试、优化模型和应用。 封装了整个 Machine Learning 工作流的终端平台,抽象出全流程复杂性,易于使用。 在 Q猜想方面:当前各界有很多相关文章或论文发表,推测可能通过 LLM 融合 RL 的方法实现,前期数据准备工作具有巨大挑战。
2024-12-18
超融合架构与AI
超融合架构与 AI 相关的知识如下: 在融合 RL 与 LLM 思想方面: AI 本质上是一堆 scaling law,当前能看到的最好模型规模在 10 的 25 到 26 次方 FLOPs 且规模还会持续增长,算力是必要条件。 需要同时满足 scalability 和 generality 的架构,如 transformer 在已知 token space 符合部分条件,但在更通用场景不太符合。 未来可能会利用用户数据源的 scaling law,alignment 也有 scaling law,只要找到对的数据就能解决。 一个值得被 scale up 的架构是基础,要支持不断加入更多数据,数据会成为瓶颈,如文本模态在 2024 年可能遇到,多模态数据引入可推迟 1 2 年。 在面向智能的架构方面: 包括为 Machine Learning 优化的高性能芯片,如 Nvidia 的 H100 Tensor Core GPU 和 Google 的 TPU,内置多计算核心和高带宽内存(HBM),可高度并行化执行神经网络计算。 能够完全发挥硬件效率的系统软件,如 Nvidia 推出的 CUDA 可直接访问 GPU 的虚拟指令集,执行内核级别的并行计算。 用于训练和推理的分布式计算框架,可有效地跨多个节点扩展模型的训练操作。 数据和元数据管理系统,为创建、管理、训练和预测数据而设计。 极低延迟的服务基础设施,使机器能够快速执行基于实时数据和上下文相关的智能操作。 Machine Learning 持续集成平台(MLOps)、模型解释器、质保和可视化测试工具,可大规模监测、调试、优化模型和应用。 封装了整个 Machine Learning 工作流的终端平台,抽象出全流程的复杂性,易于使用。 在 Q猜想方面:当前各界有很多关于 Qstar 猜想的文章或论文发表,结合核心要点内容,通往 Qstar 可能通过 LLMs 融合 RL 的方法实现,这需要大量复杂的前期数据准备工作,也是为 super alignment 做必要准备,前期数据工程相关工作挑战巨大,OpenAI 常采用简单暴力的方法解决,但目前情况未知。
2024-12-18
wifi和相机融合目标检测算法
图像融合是将两个或多个图像合成为一个新的图像,以获取比原始图像更全面和丰富的信息。可通过像素级融合、特征级融合和决策级融合等技术实现,在提高图像质量、增加信息量、遥感图像处理及计算机视觉和机器人技术中均有多种用途。 目标检测是计算机视觉领域的重要任务,旨在图像或视频中准确识别和定位特定对象。随着多模态数据的广泛应用,将不同模态信息融合能进一步提升目标检测的性能和鲁棒性。 图像融合和目标检测均是计算机视觉领域的重要技术,在多个领域有广泛应用前景和研究价值。 图像融合的大致原理是将多个不同图像合并成新图像以获得更准确、全面的信息,相关算法有小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 目标检测的大致原理是在图像中找到特定目标并进行定位和识别,相关算法有基于深度学习的目标检测算法(如 RCNN、Fast RCNN、Faster RCNN、YOLO、SSD 等)、基于传统计算机视觉技术的目标检测算法(如 HOG、SIFT、SURF 等)。
2024-12-10
数智技术与教学何以深度融合,从事实性知识学习,程序性知识学习,动机性参与三个角度说明
数智技术与教学的深度融合可以从以下三个角度进行说明: 事实性知识学习方面:数智技术能够以丰富多样的形式呈现事实性知识,如通过多媒体资源(如动画、视频、交互式图表等),使抽象的知识变得更加直观和生动,有助于学生更好地理解和记忆。同时,在线学习平台和教育软件可以提供大量的事实性知识资源,方便学生随时查阅和学习。 程序性知识学习方面:利用智能辅导系统和虚拟实验室等工具,为学生提供实践和练习的机会,帮助他们熟练掌握解决问题的步骤和方法。数智技术还能实时反馈学生的操作过程和结果,让他们及时发现错误并进行纠正,从而提高程序性知识的学习效果。 动机性参与方面:借助游戏化元素和社交学习平台,增加学习的趣味性和互动性,激发学生的学习兴趣和积极性。个性化的学习推荐和自适应学习系统能够根据学生的特点和需求提供定制化的学习内容,增强学生的学习动力和参与度。 总之,数智技术在事实性知识学习、程序性知识学习和动机性参与这三个角度都能发挥重要作用,促进教学的深度融合和优化。
2024-11-30
那个文生视频或图生视频的AI可以生成融合变化的效果
以下是关于文生视频或图生视频的 AI 生成融合变化效果的相关信息: 在人工智能技术迅速发展的当下,AI“词生卡”技术兴起,它将文字描述转化为视觉图像,重塑了创意产业格局。AI 的多模态输出能力已基本成型,包括文生文、文生图、文生码、文生视频、图生视频等,但大多在某个维度能力强,跨界融合还不够。 从生成方式分类,AI 视频生成包含: 1. 文生视频、图生视频,如 Runway、Pika labs、SD + Deforum、SD + Infinite zoom、SD + AnimateDiff、Warpfusion、Stability Animation 等。 一些热门产品如 Luma AI,其 Dream Machine 目前支持 txt2vid 文生视频和 img2vid 图生视频两种能力,8 月底最新发布的 Dream Machine 1.5 增强了提示词理解能力和视频生成能力。Luma AI 的 img2vid 生成效果在多方面表现出色,如生成时长较长、运动幅度大、能产生相机多角度位移、运动过程一致性保持较好、分辨率高且有效改善模糊感等。
2024-11-23
我给定一张图片,根据这张图片的人脸特征 生成一组写真图片
以下是关于根据给定图片的人脸特征生成写真图片的相关内容: 使用 SD 进行多人物脸部替换生成写真: 先正常生成一张特定内容的图片,如两个古风人物在大漠黄沙下互相对视。正向提示词包括“best quality, official art, 8k wallpaper, highly detailed, illustration, closeup, , upper body, antique style, drifting snow, yellow sand fills the sky, withered tree, desert, gu, <lora:武侠 V2_2.0:1>”,模型使用 majicmixRealistic 及武侠 lora。将生成的图发送到图生图中,调整重绘幅度为 0.4。在 roop 插件中进行脸部替换,如载入至尊宝和紫霞的照片形象。插件强大之处在于仅凭一张照片能复刻角色其他角度和表情。最后可使用 ps 扩图。如需插件,可添加公众号【白马与少年】回复【SD】获取。 给自己做卡通头像: 1. 复杂提示词:如“Disney boy, Low saturation Pixar Super details, clay, anime waifu, looking at viewer, nighly detailedreflections transparent iridescent colors. lonctransparent iridescent RGB hair, art by Serafleurfrom artstation, white background, divine cinematic edgelighting, soft focus. bokeh, chiaroscuro 8K, bestquality.ultradetailultra detail.3d, c4d. blender, OCrenderer. cinematic lighting, ultra HD3D renderino iw 1.5 s 500 v 5”。 2. 不同照片生成:若对照片风格不满意,可更换新照片使用上述提示词重新生成。 3. 其他调整:若觉得 Disney 风格太过卡通,可将提示词中的 Disney 换成 Pixar;若为女孩,可把 boy 换成 girl。每次生成 4 张图片,对满意的某张可点击下方的 U1~U4 生成大图,对风格满意但需调整可点击 V1~V4 进行修改。 快手「可灵」和「Sora」背后的 DiT 技术: DiT 不仅训练高效,在实际应用中图像生成能力强大。输入简单文字描述即可生成逼真图像,如各种自然景观、人物肖像、动物等,甚至能细致到毛发纹理和眼神光彩。还能在图像修复方面表现出色,智能识别瑕疵并修复,如修复老照片中被遮挡的人物面部。此外,能赋予图像不同艺术风格,如将普通照片转换成梵高风格油画或改变白天夜晚效果,为图像创作和编辑提供全新可能。
2024-12-11
类器官图像特征提取和分析软件
以下是关于类器官图像特征提取和分析软件的相关信息: LORA 是一种能够提炼图片特征的工具,在画风、人物、物品、动作姿态等方面都能固定下来。它与 Embedding 的区别在于体量,LORA 文件通常有几十上百兆,承载信息量远大于只有几十 kb 的 Embedding,尤其在还原真人物品时,LORA 的细节精度更高。下载的 LORA 放在根目录的【……\\models\\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载,注意作者使用的大模型,通常配套使用效果最佳,同时可能需要加入特定触发词保证正常使用。 Hypernetworks 主要针对画风训练,可像 LORA 一样加载,文件放在根目录的【…\\models\\hypernetworks】文件夹下,使用时同样点击红色小书找到 Hypernetworks 选项卡加载。 当下载了很多模型、Embedding、Hypernetworks 和 LORA 后,由于文件后缀名几乎相同(包括.pt/.safetensors/.ckpt 等),无法通过后缀名区分,可将文件拖到秋叶大佬整理的网站 https://spell.novelai.dev/ 查看文件类型及应放置的文件夹。
2024-11-21
ai诈骗特征
AI 诈骗可能具有以下特征: 1. 利用类似 GPT4o 这样的先进模型,以面相分析、相亲建议等看似新奇有趣的服务吸引用户,抓住人们的好奇心和浮躁心理,获取用户信任。 2. 声称能够在多个领域如穿搭、生活工作、化妆、婚姻等根据用户照片给出准确建议,包括职业、健康、财运、婚姻等综合运势。 3. 生成看似合理但可能完全错误且令人信服的内容,如虚假的事实、预测和解释。 4. 不道德地操纵或欺骗用户,尤其是对不懂 AI 的老人,可能导致其财产损失。 需要注意的是,对于 AI 生成的内容,应保持警惕,不可过度相信,要仔细检查和核实。
2024-11-21
通过学习视频,从视频当中提取特征,然后根据给定的视频素材和要求生产视频,怎么做?
以下是从给定视频素材和要求生产视频的一般步骤: 1. 内容分析:使用 AI 工具(如 ChatGPT)分析视频内容,提取关键场景、角色和情节。 2. 生成描述:根据分析结果,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:利用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:使用 AI 配音工具(如 Adobe Firefly)将相关文本转换为语音,添加背景音乐和音效。 6. 视频编辑: 准备内容:先准备一段视频中播放的内容文字,可以利用 AI 生成。 选择工具:使用剪映 App 等视频编辑软件进行处理。 操作步骤:电脑端打开剪映 App,点击“开始创作”,选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号,添加文字内容轨道,替换默认文本内容。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 在视频制作管理流程方面: 1. 剧本敲定:确保剧本内容完整,对话、场景、角色等都已经确定。 2. 制作分镜头脚本:根据剧本内容,制作详细的分镜头脚本,包括每个场景的视角、动作、表情等细节。 3. 分镜出图:为每个镜头绘制或制作相应的分镜图,每个镜头可以多出一张图,以备不时之需,或用于展示不同的视角和细节。 4. 素材管理: 图片管理:将图片按照场景或部分分别保存在不同的文件夹中,以便于管理和查找。文件夹可以命名为“场景 1”、“场景 2”等。单个图片命名为“x 场 x 镜”,例如“1 场 1 镜”表示第一场的第一镜头。 视频管理:跑视频(即制作视频素材)时,也应按照不同部分使用不同的文件夹进行管理。单个视频的命名方式与图片相同,也是“x 场 x 镜”,以保持一致性和便于对照。 5. 素材审核:在制作过程中定期审核素材,确保其符合分镜头脚本的要求,质量达标。 6. 备份存档:定期对素材进行备份,防止意外丢失,同时在项目完成后进行存档,以备后续需要时使用。
2024-10-03
ipadapter的作用是什么,能实现人物的一致性吗?比如参考人物的脸部特征
IP Adapter 即图像提示词适配器,其作用包括: 能够“复刻图像”,用户输入图像可直接生成内容或风格相似的图像。 注重图像风格和语义的复刻,兼容性强,可与结构控制插件一起使用,既控制结构,也控制图像的语义和风格。 是解决角色和风格一致性的优雅方法,能够非常精准地提取风格参考图中的角色和风格特征。 在处理人物一致性方面,IP Adapter 有一定的应用,例如在相关的图生图操作中会用到。关于其使用,之前有文章介绍。同时,Midjourney 也有类似的人物一致性相关功能。
2024-08-25
高效微调技术-LoRA 全量微调与少量参数微调
以下是关于高效微调技术 LoRA 全量微调与少量参数微调的相关信息: LoRA 微调: 微调脚本: 脚本见: 具体实现代码见: 单机多卡的微调可以通过修改脚本中的include localhost:0来实现。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。 通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 全量参数微调: 微调脚本: 脚本见: 具体实现代码见: 加载微调模型: 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,关于微调还有以下补充信息: 微调模型意味着改变模型的权重,现在微调变得越来越容易,因为开发了许多技术并建立了代码库。 像 LoRA 这样的参数高效微调技术只训练模型的小部分稀疏片段,模型大部分保持基础模型状态,效果好且成本低。 微调技术上更为复杂,需要更多技术专业知识,包括人工数据合同承包商的数据集和复杂的合成数据流程,会减慢迭代周期。 SFT(有监督的微调)相对简单明了,RLHF(基于人类反馈的强化学习)则是非常研究性的领域,难度大,不适合初学者。 目前除了传统的全量训练和 freeze 冻结某些层方式,还发展出了很多种高效的微调方法,如 LoRA、Prefix Tuning、PTuning、Prompt Tuning、AdaLoRA、3、MultiTask Prompt Tuning 等。本篇主要采用 LoRA 方式,主要思路是训练一个参数量较小的分支,然后再与底模合并,从而在模型中注入新的知识。
2025-01-06
RAG技术基本了解
RAG(Retrieval Augmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,主要用于处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。 其基本流程包括以下几个步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把文档切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。 在实际应用中,例如构建能够利用私有数据或实时数据进行推理的 AI 应用时,将相关信息检索并插入到模型的输入中,即检索增强生成,可以提高生成的质量和准确性。首先给定一个用户的输入,RAG 会从一个数据源中检索出与之相关的文本片段作为上下文,然后将用户的输入和检索到的上下文拼接成一个完整的输入传递给大模型,最后从大模型的输出中提取或格式化所需的信息返回给用户。
2025-01-06
提示词工程技术
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 提示词工程师的主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例: 在推理任务方面,目前对于大语言模型来说具有挑战性,但通过更高级的提示词工程技术可以改进。例如在涉及数学能力的推理任务中,通过设计不同的提示词和示例来展示算术功能。 在实现让 LLM 获得 tool calling 的功能方面,采用的提示词工程主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。利用正则表达式抓取输出中的“tool”和“parameters”参数,对于不同工具采用相应的处理方式。通过以上提示词工程,可以避免微调,让完全没有 tool calling 能力的 LLM 获得稳定的 tool calling 能力。 提示词工程师是一个新兴的职业,随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。
2025-01-06
RAG技术路线知识库搭建流程
RAG 技术路线知识库搭建流程主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 在构建知识库的过程中,还涉及到文档解析环节,即将各种类型的资料(包括但不限于 Word、PDF、Excel 和图片等)转换成文字,为后续流程奠定基础。针对图片一般使用 OCR 图像识别技术,针对文档一般将其转换成 Markdown 格式。文档解析完成之后,要进行预处理。 基于 Coze 的知识库问答是典型的 RAG 方案,其重要一环是文档切片(Segment),但 RAG 方案存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等。
2025-01-06
RAG技术基本了解
RAG(Retrieval Augmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,主要用于处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。 其基本流程包括以下几个步骤: 1. 文档加载:从多种不同来源加载文档,如PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把文档切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM(大语言模型),LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。在给定一个用户的输入(如问题或话题)时,RAG 会从数据源中检索出相关的文本片段作为上下文,然后将用户输入和检索到的上下文拼接成完整输入传递给大模型,并从大模型的输出中提取或格式化所需信息返回给用户。
2025-01-06
端到端语音技术现在进展到什么程度了
端到端语音技术目前取得了显著进展。 在语音合成方面: 语音合成将文本转换为可听的声音信息,是人机交互的重要接口,一般包括 TTS、歌唱合成等领域。 当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,声学后端基于此生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。 端到端声学后端一般包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。 在全模态智能体方面: OpenAI 发布的 GPT4o 是新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,对音频输入的平均反应时间为 300 毫秒,与人类对话的反应时间相似。 直接拿音频数据来训练的好处是模型能从数据中感悟到人类表达的情绪、语调、风格等,能听到几乎真实的人类的声音。 OpenAI 未公开 GPT4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,目标是用端到端的方式扩大语音模型的能力。
2025-01-03