Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai诈骗特征

Answer

AI 诈骗可能具有以下特征:

  1. 利用类似 GPT4o 这样的先进模型,以面相分析、相亲建议等看似新奇有趣的服务吸引用户,抓住人们的好奇心和浮躁心理,获取用户信任。
  2. 声称能够在多个领域如穿搭、生活工作、化妆、婚姻等根据用户照片给出准确建议,包括职业、健康、财运、婚姻等综合运势。
  3. 生成看似合理但可能完全错误且令人信服的内容,如虚假的事实、预测和解释。
  4. 不道德地操纵或欺骗用户,尤其是对不懂 AI 的老人,可能导致其财产损失。

需要注意的是,对于 AI 生成的内容,应保持警惕,不可过度相信,要仔细检查和核实。

Content generated by AI large model, please carefully verify (powered by aily)

References

鲜虾包:GPT4o能相亲,识面相了?准确率竟然高达99%

古人云:相由心生。人靠衣装。你的气质写在你的脸上。我们中华上下五千年的风水学算命学面相学,竟然被一个外来AI给研究透了。他不仅能给你看面相,在穿搭、生活工作、化妆、婚姻等多种领域都能根据你的照片来给出相应的建议。~~照片环境分析:爱好、穿着、妆容、生活环境、消费习惯、朋友亲密度~~相面因素:五官、眉毛、眼睛、鼻子、嘴巴、耳朵、下巴、额头、面型、肤色、脸部线条、纹路、面部表情、气质~~分析结论:职业、身体健康、事业、财运、霉运、性格、家庭亲情、婚姻爱情、子女、田宅~~综合运势:适宜、禁忌我预言下一个爆款c端产品很有可能是这个AI识面相或者AI相亲,(合规没问题的情况下)。太魔性了,真的玩的停不下来,测自己,测朋友,测家人。如果说妙鸭相机的爆火是抓住了人们对于自己相貌的不自信,打破了传统美颜滤镜的界限,满足了人们对于AI磨皮独特美颜的体验感。那么AI识面相就是抓住了人们对于未知的好奇心(尤其是自身和身边朋友),抓住了人们的浮躁心理和短暂满足心理。但是,总的说一句,娱乐虽好,可不要过度相信AI哦。其次,也请保护好不懂AI的老人,不要让诈骗分子得逞。因为这次GPT4o的更新,在拟人程度上进步地真的很可怕!后言

金融服务业将比你想象得更快地接纳生成式 AI

原文地址:https://a16z.com/2023/04/19/financial-services-will-embrace-generative-ai-faster-than-you-think/原文作者:Angela Strange,Anish Acharya,Sumeet Singh,Alex Rampell,Marc Andrusko,Joe Schmidt,David Haber,Seema Amble发表时间:2023年4月19日译者:通往AGI之路,若有瑕疵之处,请在段落评论中斧正,谨此致谢人工智能和机器学习在金融服务行业的应用已经有十多年的历史,它们已经促成了从更好的信贷评估到更精确的基础欺诈评分等一系列的改进。大型语言模型(LLMs)通过生成式人工智能,代表着一次重大的飞跃,正在改变[教育](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)、[游戏](https://a16z.com/2022/11/17/the-generative-ai-revolution-in-games/)、[商业](https://a16z.com/2023/02/07/everyday-ai-consumer/)等多个领域。与传统的AI/ML主要侧重于基于现有数据进行预测或分类不同,生成式人工智能可以创造全新的内容。这种能力,结合了对大量非结构化数据的训练和实际上无限的计算能力,可能将带来金融服务市场数十年来最大的变革。与其他平台转变——如互联网、移动设备、云计算——不同,在这些转变中金融服务行业的采用速度较慢,在这里,我们预计最优秀的新公司和现有企业将立即开始接纳生成式人工智能。

如何使用 AI 来做事:一份带有观点的指南

为了回应你的答案,AI很容易“产生幻觉”并生成看似合理的事实。它可以生成完全错误的内容,而且非常令人信服。让我强调一下:AI连续且良好地撒谎。它告诉你的每一件事或信息可能都是不正确的。你需要检查所有的东西。你需要全部检查一下。特别危险的是要求它为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)。因为GPT-4通常更加扎实,因为Bing的互联网连接意味着它实际上可以拉入相关事实。[这是一份避免幻觉的指南](https://oneusefulthing.substack.com/p/how-to-get-an-ai-to-lie-to-you-in),但它们不可能完全消除。另请注意,人工智能不会解释自己,它只会让你认为它解释了自己。如果你要求它解释它为什么写东西,它会给你一个完全编造的合理答案。当你询问它的思考过程时,它并没有审查自己的行动,它只是生成听起来像它在做这样的文本。这使得理解系统中的偏见非常困难,尽管这些偏见几乎肯定存在。它也可以被不道德地用来操纵或作弊。你对这些工具的输出负责。

Others are asking
在现阶段的GPT发展下,与AI交流提示词还重要吗
在现阶段的 GPT 发展下,与 AI 交流的提示词仍然非常重要。以下是一些原因: 1. 目标明确:对于 GPT 及其他 AI 来说,明确每一步的目标至关重要。只有给予清晰的指导,AI 才能产生相关且有价值的输出。 2. 逻辑性:在各种提示策略中,逻辑性都是关键。清晰、结构化的提示有助于 AI 更有效地生成输出。 3. 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按照清晰的步骤进行极为重要。 4. 考虑变量:这在某些提示策略中尤其重要,需要考虑可能影响结果的所有因素。 例如,在运用 CoD 将文章做摘要的实验中,个人观点认为以英文提示词最后加上中文输出的方式效果较好,并且密度等级 4 的结果较让人满意。同时,LangGPT 框架的出现也表明随着新一代模型的发布,提示词的重要性日益凸显,其编写过程逐渐成为一种编程语言。但也有人认为框架在协助的同时也有限制,提示词带来的收益并非如宣传所说,其重要性会朝两极分化。
2025-01-07
春节期间,有哪款AI工具有活动
春节期间的 AI 工具活动有: 社区共创项目中的 AI 春晚,去年 300 人 30 天共创了 AI 春晚,今年的也即将开始,可报名参与多种岗位。 围绕“过年”项目主题制作 AI 音乐视频的相关活动。
2025-01-07
我想用AI制作一个帮助自己及时获得某细分工业领域国内外信息的工具,应该如何开始?
以下是使用 AI 制作帮助自己及时获得某细分工业领域国内外信息工具的步骤: 1. 让 AI 阅读学习一篇您认为优秀的行业调研报告,总结其中的方法论,输出一份“行业调研报告”的研究方法和操作框架。 2. 询问 AI 该文章在收集行业数据时使用了哪些一手数据和二手数据,并请其推荐一些靠谱的行业资料收集网站。 3. 要求 AI 参考上述内容,为您写一份“XXX 行业调研报告”,并请其作为“行业调研报告撰写专家”,推荐 10 个“XXX 行业”信息网站和 5 个“XXX 行业”研究微信公众号,然后输出一份“XXX 行业调研报告”框架。 4. 要求 AI 针对上述“XXX 行业调研报告”框架,丰富每一章节内容,每章内容字数大于 200 字。 5. 完成以上 4 个步骤后,AI 会为您写出一个“XXX 行业调研报告”的初稿。接下来,您可以根据自己的需求,让 AI 进一步完善每一个章节的内容。然后结合您自己的独特经验和知识,对文章内容进行润色和调整。 需要注意的是,要使调研报告有深度,可以通过以下两个路径: 1. 自己对行业比较了解,整理深度洞察和见解。 2. 一步一步深度咨询 AI,借助 AI 的海量知识,一边学习、一边研究、一边洞察总结。(通过借助 AI,可以加速我们的学习和研究能力) 操作示例如下:获取“kimi 对话原文”链接: 欢迎与 JessieZTalk 交流,在 AIGC 的路上共同进步!
2025-01-07
如何利用Ai生成长文的脑图
以下是关于利用 AI 生成长文脑图的相关信息: 一、AI 生图相关课程与分享 讨论了 AI 生图的学习课程安排,包括邀请白马老师授课、介绍相关工具网站吐司,还提及了 AI 工具的消费和应用情况等。 二、AI 绘图模型 1. 特点、优势、应用场景以及在实际操作中的使用方法和技巧。 2. 工具 SD 的各种玩法、不同界面、模型分类及应用场景,强调了其在创意设计中的作用和优势。 三、图像生成模型 1. 特点、发展历程、优势与应用。 2. 吐司网站的使用方法。 四、获取额外算力 通过特定链接注册或填写邀请码 BMSN,新用户 7 天内可额外获得 100 算力。 五、文生图的操作方式 在首页有对话生图对话框,输入文字描述即可生成图片,不满意可通过对话让其修改。 六、模型及生成效果 Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成的图片效果受多种因素影响。 七、图生图及参数设置 可通过电图基于图片做延展,生图时能调整尺寸、生成数量等参数,高清修复会消耗较多算力建议先出小图。 八、特定风格的生成 国外模型对中式水墨风等特定风格的适配可能存在不足,可通过训练 Lora 模型改善。 九、与思维导图相关的 AI 工具 1. GitMind:免费跨平台,支持多种模式,可自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线,无需注册登录,支持自动生成节点。 4. Xmind Copilot:基于 GPT 的助手,可一键拓展思路,生成文章大纲。 5. TreeMind:输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括头脑风暴功能,提升生产力。 十、AI 摆摊项目 1. AI 图像处理:图像生成、照片修复与动起来、动漫化头像、老照片复活、创意壁纸制作等。 2. 文案与内容创作:文案定制、朋友圈文案生成、爆款文案编写、创意故事、情话生成等。 3. 音频与音乐制作:专属歌曲创作、音频处理、声音克隆、AI 唱歌、背景音乐定制等。 4. 视频处理:视频换脸、照片转视频、视频动漫化、视频剪辑、数字人制作等。 5. 智能体与 Coze:搭建智能体、GPTs 创建、coze 工作流、微信机器人等。 6. AI 教育与咨询:AI 应用培训、课程设计、商业化咨询、AI+行业应用咨询等。
2025-01-07
要熟练使用ai的话,英语得是哪个级别的?
要熟练使用 AI ,对英语水平的要求会因具体的应用场景和个人需求而有所不同。 一般来说,如果是为了进行基本的交流和获取常见的信息,具备大学英语四级左右的水平可能就能够初步应对。但如果想要更深入地理解和运用 AI 中的复杂技术文档、进行专业领域的交流,或者参与国际前沿的研究和讨论,可能需要达到大学英语六级甚至更高的水平,如雅思 6.5 分及以上。 例如,在一些需要准确理解和运用复杂句子结构、多样化词汇,并能进行深入的观点阐述和交流的场景中,较高的英语水平会更有优势。 同时,学英语的目的和需求不同,所需的英语水平也不同。比如,为了跨语言交流、应试、工作、获取信息或理解文化等,学习的必要性和路径都会有所差异。 在使用 AI 辅助英语学习时,要注意一些事项:AI 只是辅助工具,不能替代人的思考;给 AI 的信息要尽可能准确、清晰;要注重思维启发和知识学习而非单纯获取答案;掌握一些向 AI 提问的技巧;养成做一道题就新开一个对话的好习惯;对于英语、语文之外的学科的学习要慎用 AI 。 此外,英语学习的重点在于“有效输入”,然后是理解后的输出。可以尝试不开字幕听感兴趣的优质播客,每天熟读并背诵一篇 100 字短文等方法。
2025-01-07
学ai前要先学会英语吗?
学习 AI 之前是否要先学会英语,因人而异。 对于一些人来说,英语基础较差并不影响他们开始接触和使用 AI 工具。例如,有文科生在不懂代码、英语也差的情况下,依然能够注册尝试各种 AI 工具,并在学习后取得一定成果。 然而,在学习 AI 的过程中,英语可能会起到一定的辅助作用。比如,了解英文世界里的 AI 发展动态,能够获取更多前沿信息。同时,像在口语练习方面,利用相关的 AI 工具可能有助于提升英语能力,从而更好地理解和应用 AI 技术。 总之,英语不是学习 AI 的绝对前提条件,但具备一定的英语能力可能会为学习 AI 带来更多便利和优势。
2025-01-06
案例:借助人工智能技术的诈骗 一、案例材料 1.背景资料 (1)近期全国范围内出现了一种新型电信诈骗——AI换脸诈骗,该诈骗利用AI人工智能,通过“换脸”和“拟声”技术模仿受害人的朋友或亲戚的声音和外貌,以此骗取受害者的信任,进行网络诈骗,近日包头警方就根据一起典型案例,向大家发出了防范AI换脸诈骗的警示。 财联社5月22日讯,据平安包头微信公众号消息,包头警方发布了一起利用人工智能(AI)实施电信诈骗的典型案例,一家福州市科技公司的法人代表郭先生竟在短短10分钟内被骗走了430万元人民币。
以下是关于 AI 的相关内容: 律师如何写好提示词用好 AI: 对于不具备理工科背景的文科生,可将 AI 视为黑箱,只需知道其能模仿人类思维理解和输出自然语言。AI 就像似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。提示词应是相对完善的“谈话方案”,成果在与 AI 的对话中产生,要接受其存在的“不稳定性”,并在对话中限缩自己思维的模糊地带。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未具体阐述)
2024-12-25
人工智能技术的诈骗方式一般采用哪些人工智能技术
人工智能的诈骗方式可能会运用以下技术: 1. 操纵技术:通过诱导人们做出决定来加以欺骗,例如采用潜意识成分,如人们无法感知的音频、图像、视频刺激,或者其他操纵或欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择。脑机界面或虚拟现实等也可能促进这种情况发生。 2. 利用个人或特定群体的弱点:例如针对年龄、残疾或特定的社会或经济状况,如生活在极端贫困中的人、少数民族或宗教少数群体,实质性地扭曲个人的行为,并对其或其他个人或群体造成重大危害。 此外,拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能导致的欺诈和欺骗,建立检测人工智能生成内容和验证官方内容的标准和最佳实践。商务部将为内容认证和水印开发指导,以明确标记人工智能生成的内容。联邦机构将使用这些工具让美国人容易知道他们从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。
2024-12-08
借助人工智能技术的诈骗方式为什么不容易被人们所察觉,它一般法采用哪些人工智能技术
很抱歉,当前提供的知识库内容中没有直接针对“借助人工智能技术的诈骗方式为什么不容易被人们所察觉,它一般采用哪些人工智能技术”这一问题的准确回答。但一般来说,借助人工智能技术的诈骗不易被察觉可能是因为其手段更加隐蔽和复杂,例如利用自然语言处理技术生成逼真的虚假信息,或者通过机器学习算法分析用户行为和偏好来精准实施诈骗。常见采用的人工智能技术可能包括自然语言生成、图像识别伪装、大数据分析等。
2024-12-02
借助人工智能技术的诈骗方式为什么不容易被人们所察觉,它一般法采用哪些人工智能技术
很抱歉,当前提供的知识库内容中没有直接针对“借助人工智能技术的诈骗方式为什么不容易被人们所察觉,它一般采用哪些人工智能技术”这一问题的准确回答。但一般来说,借助人工智能技术的诈骗不易被察觉可能是因为其具有高度的仿真性和隐蔽性。例如,利用自然语言处理技术生成逼真的虚假信息,或者通过机器学习算法分析用户行为和偏好,从而精准实施诈骗。然而,具体采用的人工智能技术可能因诈骗场景和手段的不同而有所差异。
2024-12-02
现阶段应对ai诈骗研究进展
现阶段应对 AI 诈骗的研究进展主要包括以下方面: 拜登签署的 AI 行政命令要求开发最强大 AI 系统的开发者与美国政府分享安全测试结果等关键信息。对于可能对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型,开发公司在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以清晰标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 OpenAI 提出通过“指令层次结构”修复“忽略所有先前指令”攻击的方法,并已在 GPT40 Mini 中部署。Anthropic 在多重越狱方面的工作表明了“警告防御”的潜力,在前面和后面添加警告文本以警示模型。Gray Swan AI 的安全专家试用“断路器”,专注于重新映射有害表示。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准,Scale 根据私人评估推出了自己的稳健性排行榜。 除了常见的越狱攻击,还存在更隐蔽的攻击,如伯克利和麻省理工学院的研究人员创建的看似无害的数据集,会训练模型响应编码请求产生有害输出。
2024-12-02
ai诈骗现阶段研究进展及其成果
目前关于 AI 诈骗的研究进展及成果的相关内容较少。但在 AI 领域,以下方面的研究成果可能对理解 AI 诈骗有所帮助: 神经网络研究:自 2010 年左右,大型公共数据集的出现推动了神经网络的发展。2012 年卷积神经网络用于图像分类,错误率大幅下降。2015 年微软研究院的 ResNet 架构达到人类水平准确率。此后,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中表现成功。 AI 幻觉应对:研究人员开发多种技术手段应对,如进行数据“体检”,包括数据清洗去除错误信息、补充缺失数据等,以及数据增强为模型提供更多丰富训练数据。 政策方面:拜登签署的 AI 行政命令中,要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息,制定确保 AI 系统安全可靠的标准、工具和测试,建立相关安全委员会,应对 AI 对关键基础设施的威胁,制定防范利用 AI 制造危险生物材料的新标准,建立检测 AI 生成内容和认证官方内容的标准及最佳实践以防范 AI 导致的欺诈和欺骗。
2024-12-02
文本与图像跨模态特征融合技术有哪些
文本与图像跨模态特征融合技术主要包括以下几种: 1. 图像融合方面: 像素级融合:将多个图像的像素直接进行组合。 特征级融合:对图像的特征进行融合。 决策级融合:基于不同图像的决策结果进行融合。 相关算法:小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 2. 目标检测方面: 基于深度学习的目标检测算法:如 RCNN、Fast RCNN、Faster RCNN、YOLO、SSD 等。 基于传统计算机视觉技术的目标检测算法:如 HOG、SIFT、SURF 等。 3. 在 Stable Diffusion 中: 通过 Attention 机制将文本与图片的特征对应起来,例如两个输入先经过 Attention 机制输出新的 Latent Feature,再将新输出的 Latent Feature 与输入的 Context Embedding 做 Attention 机制。 Spatial Transformer 模块在图片对应的位置上融合语义信息,是将文本与图像结合的“万金油”模块。 CrossAttention 模块有助于在输入文本和生成图片之间建立联系,将图像和文本信息关联起来,用于将文本中的情感元素传递到生成图片中。 4. 多模态融合方法: 最初常采用预训练的目标检测器,如 ViLBERT、VisualBERT 和 UnicoderVL,通过提取图像特征和执行交叉模态预训练任务。 随着 ViT 的出现和普及,更多方法利用 ViT 作为图像编码器,强调大规模预训练,例如 Flamingo。 近期向多模态 LLMs 发展,如 LLaVA 和 MiniGPT4,通过融合视觉和语言信息,能够更有效地完成视觉理解相关的任务。
2025-01-01
特征融合技术
特征融合技术: 图像融合是将两个或多个图像合成为一个新的图像,以获得比原始图像更全面和丰富的信息。可通过像素级融合、特征级融合和决策级融合等技术实现,在提高图像质量、增加信息量、遥感图像处理及计算机视觉和机器人技术中有多种用途。相关算法有小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 目标检测是在图像或视频中准确地识别和定位特定对象,随着多模态数据的广泛应用,将不同模态的信息融合可提高其性能和鲁棒性。相关算法有基于深度学习的(如 RCNN、Fast RCNN、Faster RCNN、YOLO、SSD 等)和基于传统计算机视觉技术的(如 HOG、SIFT、SURF 等)。 图像融合和目标检测都是计算机视觉领域的重要技术,在多个领域有广泛应用前景和研究价值。
2025-01-01
我给定一张图片,根据这张图片的人脸特征 生成一组写真图片
以下是关于根据给定图片的人脸特征生成写真图片的相关内容: 使用 SD 进行多人物脸部替换生成写真: 先正常生成一张特定内容的图片,如两个古风人物在大漠黄沙下互相对视。正向提示词包括“best quality, official art, 8k wallpaper, highly detailed, illustration, closeup, , upper body, antique style, drifting snow, yellow sand fills the sky, withered tree, desert, gu, <lora:武侠 V2_2.0:1>”,模型使用 majicmixRealistic 及武侠 lora。将生成的图发送到图生图中,调整重绘幅度为 0.4。在 roop 插件中进行脸部替换,如载入至尊宝和紫霞的照片形象。插件强大之处在于仅凭一张照片能复刻角色其他角度和表情。最后可使用 ps 扩图。如需插件,可添加公众号【白马与少年】回复【SD】获取。 给自己做卡通头像: 1. 复杂提示词:如“Disney boy, Low saturation Pixar Super details, clay, anime waifu, looking at viewer, nighly detailedreflections transparent iridescent colors. lonctransparent iridescent RGB hair, art by Serafleurfrom artstation, white background, divine cinematic edgelighting, soft focus. bokeh, chiaroscuro 8K, bestquality.ultradetailultra detail.3d, c4d. blender, OCrenderer. cinematic lighting, ultra HD3D renderino iw 1.5 s 500 v 5”。 2. 不同照片生成:若对照片风格不满意,可更换新照片使用上述提示词重新生成。 3. 其他调整:若觉得 Disney 风格太过卡通,可将提示词中的 Disney 换成 Pixar;若为女孩,可把 boy 换成 girl。每次生成 4 张图片,对满意的某张可点击下方的 U1~U4 生成大图,对风格满意但需调整可点击 V1~V4 进行修改。 快手「可灵」和「Sora」背后的 DiT 技术: DiT 不仅训练高效,在实际应用中图像生成能力强大。输入简单文字描述即可生成逼真图像,如各种自然景观、人物肖像、动物等,甚至能细致到毛发纹理和眼神光彩。还能在图像修复方面表现出色,智能识别瑕疵并修复,如修复老照片中被遮挡的人物面部。此外,能赋予图像不同艺术风格,如将普通照片转换成梵高风格油画或改变白天夜晚效果,为图像创作和编辑提供全新可能。
2024-12-11
类器官图像特征提取和分析软件
以下是关于类器官图像特征提取和分析软件的相关信息: LORA 是一种能够提炼图片特征的工具,在画风、人物、物品、动作姿态等方面都能固定下来。它与 Embedding 的区别在于体量,LORA 文件通常有几十上百兆,承载信息量远大于只有几十 kb 的 Embedding,尤其在还原真人物品时,LORA 的细节精度更高。下载的 LORA 放在根目录的【……\\models\\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载,注意作者使用的大模型,通常配套使用效果最佳,同时可能需要加入特定触发词保证正常使用。 Hypernetworks 主要针对画风训练,可像 LORA 一样加载,文件放在根目录的【…\\models\\hypernetworks】文件夹下,使用时同样点击红色小书找到 Hypernetworks 选项卡加载。 当下载了很多模型、Embedding、Hypernetworks 和 LORA 后,由于文件后缀名几乎相同(包括.pt/.safetensors/.ckpt 等),无法通过后缀名区分,可将文件拖到秋叶大佬整理的网站 https://spell.novelai.dev/ 查看文件类型及应放置的文件夹。
2024-11-21
通过学习视频,从视频当中提取特征,然后根据给定的视频素材和要求生产视频,怎么做?
以下是从给定视频素材和要求生产视频的一般步骤: 1. 内容分析:使用 AI 工具(如 ChatGPT)分析视频内容,提取关键场景、角色和情节。 2. 生成描述:根据分析结果,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:利用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:使用 AI 配音工具(如 Adobe Firefly)将相关文本转换为语音,添加背景音乐和音效。 6. 视频编辑: 准备内容:先准备一段视频中播放的内容文字,可以利用 AI 生成。 选择工具:使用剪映 App 等视频编辑软件进行处理。 操作步骤:电脑端打开剪映 App,点击“开始创作”,选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号,添加文字内容轨道,替换默认文本内容。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 在视频制作管理流程方面: 1. 剧本敲定:确保剧本内容完整,对话、场景、角色等都已经确定。 2. 制作分镜头脚本:根据剧本内容,制作详细的分镜头脚本,包括每个场景的视角、动作、表情等细节。 3. 分镜出图:为每个镜头绘制或制作相应的分镜图,每个镜头可以多出一张图,以备不时之需,或用于展示不同的视角和细节。 4. 素材管理: 图片管理:将图片按照场景或部分分别保存在不同的文件夹中,以便于管理和查找。文件夹可以命名为“场景 1”、“场景 2”等。单个图片命名为“x 场 x 镜”,例如“1 场 1 镜”表示第一场的第一镜头。 视频管理:跑视频(即制作视频素材)时,也应按照不同部分使用不同的文件夹进行管理。单个视频的命名方式与图片相同,也是“x 场 x 镜”,以保持一致性和便于对照。 5. 素材审核:在制作过程中定期审核素材,确保其符合分镜头脚本的要求,质量达标。 6. 备份存档:定期对素材进行备份,防止意外丢失,同时在项目完成后进行存档,以备后续需要时使用。
2024-10-03
ipadapter的作用是什么,能实现人物的一致性吗?比如参考人物的脸部特征
IP Adapter 即图像提示词适配器,其作用包括: 能够“复刻图像”,用户输入图像可直接生成内容或风格相似的图像。 注重图像风格和语义的复刻,兼容性强,可与结构控制插件一起使用,既控制结构,也控制图像的语义和风格。 是解决角色和风格一致性的优雅方法,能够非常精准地提取风格参考图中的角色和风格特征。 在处理人物一致性方面,IP Adapter 有一定的应用,例如在相关的图生图操作中会用到。关于其使用,之前有文章介绍。同时,Midjourney 也有类似的人物一致性相关功能。
2024-08-25