Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

AI的系统学习路径应该是如何规划的

Answer

以下是为您规划的 AI 系统学习路径:

  1. 编程语言基础

    • 可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习筑牢根基。
  2. 尝试使用 AI 工具和平台

    • 体验如 ChatGPT、Midjourney 等 AI 生成工具,熟悉其应用场景。
    • 探索面向中学生的 AI 教育平台,例如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识

    • 了解 AI 的基本概念、发展历程。
    • 掌握主要技术,如机器学习、深度学习等。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与实践项目

    • 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试运用 AI 技术解决生活中的实际问题,锻炼动手能力。
  5. 关注前沿动态

    • 关注 AI 领域的权威媒体和学者,及时了解 AI 技术的最新进展。
    • 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。

总之,您可以从编程基础、工具体验、知识学习、实践项目等多个维度全面系统地学习 AI 知识和技能,为未来在 AI 领域的发展做好充分准备。

Content generated by AI large model, please carefully verify (powered by aily)

References

WaytoAGI 品牌 VI

社区简短介绍“通往AGI之路”(WaytoAGI)是一个致力于人工智能(AI)学习的中文知识库和社区平台,旨在为学习者提供系统全面的AI学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取AI知识,提高自身能力该平台由开发者、学者和AI爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的AI行业资讯等此外,社区还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作如果您对AI学习感兴趣,加入“通往AGI之路”社区将是一个不错的选择。在这里,您可以获取最新的AI知识,参与实践活动,与志同道合的学习者共同成长。[heading2]前言:品牌视觉识别介绍[content]「通往AGI之路」的品牌VI(视觉识别)融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建了一个充满活力和前瞻性的品牌形象。颜色:我们选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。彩虹色的丰富层次和鲜明对比,象征着人工智能领域的无限可能和多维视角。图案:品牌的标志性图案是一只鹿,它在中文中与「路」谐音,象征着通往AGI未来的道路。鹿的形象优雅而智慧,寓意在追求AGI过程中的品味与睿智。字体设计:我们选择的是简洁现代的非衬线字体,这种字体风格简约而现代,易于阅读,强调了信息传达的清晰度和直接性。「通往AGI之路」是一个充满活力、敢于创新、追求科技美感的品牌。我们的VI不仅仅是视觉上的呈现,它是我们对AGI探索路上多元思维和创新追求的体现。

介绍说明

AJ,产品经理,「通往AGI之路」WaytoAGI开源知识库的作者从自己收录整理信息,补齐信息差,到希望得到更多交流可以更好学习这个是项目的起源和免费社群开发的初衷[heading3]社区介绍[content]WaytoAGI(通往AGI之路)是一个致力于人工智能(AI)学习的中文知识库和社区平台。为学习者提供系统全面的AI学习路径,覆盖从基础概念到实际应用的各个方面。全球领先的AI开源社区最新最全面的AI资源丰富多样的技术活动100+进行中的活动4000+学习资源1000000+社区成员1.知识库与社区平台:WaytoAGI汇集了上千个人工智能网站和工具,提供最新的AI工具、AI应用、AI智能体和行业资讯。2.学习资源:平台提供丰富的学习资源,包括文章、教程、工具推荐以及最新的AI行业资讯等。3.实践活动:社区定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。4.开放共享:WaytoAGI引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了AI春晚、离谱村等大型共创项目。5.用户基础:在没有任何推广的情况下,WaytoAGI一年时间已有超过100万用户和超千万次的访问量。6.目标与愿景:WaytoAGI的目标是让每个人的学习过程少走弯路,让更多的人因AI而强大

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

Others are asking
ai自动总结视频
以下是关于 AI 自动总结视频的相关内容: 目前大部分用 AI 总结视频的工具/插件/应用是通过提取视频字幕来实现的。对于有字幕的 B 站视频,若视频栏下面有字幕按钮,说明视频作者已上传字幕或后台适配了 AI 字幕。可以安装油猴脚本,安装后刷新浏览器,点击字幕会出现“下载”按钮,可选择多种字幕格式,然后将字幕文字内容全选复制发送给 GPTs 进行总结。 此外,如果想用 AI 把小说做成视频,大致的制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。内容由 AI 大模型生成,请仔细甄别。
2024-12-27
如何训练AI
训练 AI 通常包括以下步骤: 1. 收集海量数据:如同教导孩子成为博学多才之人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于 AI 模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:在孩子学习前要整理资料确保适合其年龄和学习能力,AI 研究人员也需清理和组织收集的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是复杂的神经网络,如 Transformer 架构,其擅长处理序列数据(如文本)。 4. 训练模型:如同孩子开始阅读和学习,AI 模型开始“阅读”提供的所有数据,这个过程称为“训练”。例如,模型会反复阅读数据,尝试预测句子中的下一个词,通过不断重复逐渐学会理解和生成人类语言。 此外,为了在医疗保健领域让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入和正规学校教育开始,再通过学徒实践从出色实践者那里学习,获取复杂情况下确定最佳答案的直觉。对于 AI,应通过使用彼此堆叠的模型来训练,而不是仅依靠大量数据和期望一个生成模型解决所有问题。比如先训练生物学模型,再添加特定于医疗保健或药物设计的数据点。 训练 AI 还需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。
2024-12-27
关于使用原理 AI的论文
以下是关于 AI 原理的相关内容: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据无标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多称为深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-27
如何学习使用ai
以下是关于如何学习使用 AI 的全面指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并有可能获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可根据自身兴趣选择特定模块深入学习,同时一定要掌握提示词的技巧,它容易上手且很有用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,知识库中也提供了很多大家实践后的作品和文章分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的有效方式。例如尝试使用 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,从而获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、用 AI 学习外语 1. 设定目标:明确学习目标和时间表,分阶段完成学习任务。 2. 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 3. 模拟真实环境:尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 七、用 AI 进行英语和数学学习 英语学习: 1. 智能辅助工具:利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错,改进英语表达和写作能力。 2. 语音识别和发音练习:使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用自适应学习平台(如 Duolingo)利用 AI 技术量身定制学习计划,提供个性化学习内容和练习。 4. 智能导师和对话机器人:利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:使用自适应学习系统(如 Khan Academy)结合 AI 技术提供个性化学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:利用智能题库和作业辅助工具(如 Photomath)通过图像识别和数学推理技术提供数学问题解答和解题步骤。 3. 虚拟教学助手:使用虚拟教学助手(如 Socratic)利用 AI 技术解答数学问题、提供教学视频和答疑服务,帮助理解和掌握数学知识。 4. 交互式学习平台:参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-27
聊聊ai的发展
AI 的发展历程如下: 1. 智能起源:早期的 AI 更多应用于完成人脸识别等分类判断任务,充满机器感。 2. 生成式 AI 的诞生:在写文章、画画、写歌等方面展现出类似人类的智慧,能力惊人。 3. 发展阶段: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 4. 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 对于希望继续精进 AI 的人,可以尝试了解以下基础内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-27
聊聊ai的发展
AI 的发展历程如下: 1. 智能起源:早期的其他 AI 更多应用于完成人脸识别等分类判断任务,充满机器感。而生成式 AI 的诞生带来了变革,它能像人一样创作交流,在写文章、画画、写歌等方面展现出人类般的智慧,能力惊人。 2. 发展阶段: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 3. 当前前沿技术点: 大模型(Large Language Models):如 GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 如果希望在 AI 领域继续精进,还可以尝试了解以下基础内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-27
comfyui的学习路径
以下是一些 ComfyUI 的学习路径和资源: 1. 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网址:https://www.comfyuidoc.com/zh/ 2. 优设网:有详细的入门教程,介绍了 ComfyUI 的特点、安装方法及生成图像等内容。网址:https://www.uisdc.com/comfyui3 3. 知乎:有用户分享的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。网址:https://zhuanlan.zhihu.com/p/662041596 4. Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程。网址:https://www.bilibili.com/video/BV14r4y1d7r8/ 此外,还有以下共学快闪相关的学习内容: 1. Stuart 风格迁移 2. 红泥小火炉基础课程 3. 大雨换背景图 4. Anna 娜娜°图生 3D 5. 柒小毓基础课程 6. Ting 基础课程 7. 郑个小目标针对某个插件的深入讲解 8. 波风若川报错解决 9. chen 工作流的研发 10. 朱敏🎈基础课程、工作流 11. 王卓圻基础课程 12. 南城基础课程 13. Zero one 工作流开发 14. 梓阳基础课程 15. 蓝牙耍手机工作流搭建思路 16. 皮皮 Peter 工作流的设计规划和调优逻辑 17. Jāy Līn 锦鲤工作流搭建逻辑和原理 18. K 如何本地部署基础生图参数选择工作流的基本应用 19. Adai 基础课程 20. 镜生视频 21. x 基础教程 22. 梦飞基础教程 23. 各个节点讲解和参数含义 24. 戴志伟基础课程 25. 雪娴_CC 基础课程,从安装开始 26. Joey 实时转绘工作流 27. 倪星宇 28. 22 换脸换背景实践落地 29. 早点睡觉 30. CT 优秀案例 31. 三思基础教程 32. 晓珍 33. Mr.大狐🏝报错解决 34. Duo 多吉~基础课程 35. 陈旭常用节点讲解和简单的节点制作 36. 长风归庭基础教程+工作流创建 推荐的学习路径: 1. 入门视频教程: 第 1 课:ComfyUI 入门教程,网址:https://www.bilibili.com/video/BV1D7421N7xN 第 2 课:ComfyUI 自定义节点的秘密,网址:https://www.bilibili.com/video/BV1pZ421b7t7 第 3 课:拆解 ComfyUI 工作流,网址:https://www.bilibili.com/video/BV1ab42187er/ 2. 理论宝典教程:学 ZHO 出品的免费理论视频课程 3. 文生图实操:学习完上面的视频课程,就可以使用下面的文生图工作流实际出图实操。工作流网址:https://openart.ai/workflows/lailai/textgeneratesimagesmvpworkflow/ChYNJiXHkZrjyvg1yL9f 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-27
有关AI的学习路径
以下是为您提供的 AI 学习路径: 新手学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 AI 与宠物结合的学习路径: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 偏向技术研究方向的学习路径: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向的学习路径: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-24
AI 学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-23
flux1-depth-dev模型存放路径
flux1depthdev 模型的存放路径如下: 1. 下载 flux1depthdev 模型放到 ComfyUI/models/diffusion_models/文件夹中。 夸克网盘:链接:https://pan.quark.cn/s/571d174ec17f 百度网盘:见前文 2. depth lora 模型:https://huggingface.co/blackforestlabs/FLUX.1Depthdevlora ,放到:comfyUI\\models\\loras 。 3. 百度网盘分享的 flux1depthdevlora.safetensors : 链接:https://pan.baidu.com/s/10BmYtY3sU1VQzwUy2gpNlw?pwd=qflr 提取码:qflr
2024-12-17
AIGC产品经理学习路径
以下是为您提供的 AIGC 产品经理学习路径: 1. 技术方面:具备扎实的编程、算法工程、AI 应用开发、后端开发等技术背景,熟悉使用如 Midjourney、Stable Diffusion(SD)、Coze、GPT 等工具。 2. 产品经验:拥有产品开发与管理经验,尤其是在互联网和 AI 产品开发方面,具备项目管理与执行能力。 3. 应用场景:广泛涉足 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等多元化应用场景。 4. 学习提升:处于 AI 技术的初学阶段,渴望通过学习提升技能,并将 AI 技术应用到实际工作和生活中。 5. 课程学习:可以选择如【野菩萨的 AIGC 资深课】这样的课程,课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。 希望以上内容对您有所帮助。
2024-12-12
大模型学习路径
以下是大模型的学习路径: 1. 大模型入门: 通俗来讲,大模型输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 可以用“上学参加工作”来类比大模型的训练和使用过程: 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:用合适算法让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称为推导(infer)。 Token 是原始文本数据与大模型可使用的数字表示之间的桥梁,输入分词时会数字化形成词汇表。 2. 系统学习 LLM 开发: 掌握深度学习和自然语言处理基础:包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 理解 Transformer 和 BERT 等模型原理:包括 Transformer 模型架构及自注意力机制原理,BERT 的预训练和微调方法。掌握相关论文,如 Attention is All You Need、BERT 论文等。 学习 LLM 模型训练和微调:包括大规模文本语料预处理,LLM 预训练框架,如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 LLM 模型优化和部署:包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,模型服务化、在线推理、多语言支持等。相关资源有 ONNX、TVM、BentoML 等开源工具。 LLM 工程实践和案例学习:结合行业场景进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态:关注顶会最新论文、技术博客等资源。
2024-12-09
我面临退休,想使用ai开展第二职业,该如何规划实施?
以下是为您规划使用 AI 开展第二职业的一些建议: 1. 深入了解 AI 领域:明确自己的兴趣点,比如是对 AI 提示词、AI 绘画、AI 智能体还是其他方面感兴趣。 2. 评估自身技能:确定自己现有的技能与 AI 领域的结合点,以及还需要提升哪些技能。 3. 学习与提升:根据职业目标,获取个性化的学习建议和资源,提升在 AI 领域的专业技能。 4. 选择研究课题:有意识地选择有潜力和市场需求的研究方向。 5. 宣传工作成果:让更多人了解您在 AI 领域的工作和成果。 6. 合作与交流:与能力强且您钦佩的人合作,学习他们的研究品味和思考方式。 7. 关注行业趋势:了解 AI 领域的最新发展和未来方向,比如更事实性不会产生幻觉的语言模型、可以使用工具与世界进行交互的多模态模型等。 8. 制定职业规划:明确短期和长期的职业目标,制定详细的发展计划。 同时,您可以利用一些职业规划服务产品,比如: 1. 对于学生和应届毕业生,可以通过产品了解 AI 技术在不同职业中的应用,评估兴趣和技能,选择合适职业路径并制定规划,根据职业目标获取个性化学习建议和资源提升技能。 2. 对于职场新人和职业转换者,可根据自身职业目标和市场需求制定发展计划,明确短期和长期目标,获取职业转型支持和必要技能培训资源。 3. 对于企业,可利用产品评估应聘者 AI 技能水平,为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才。 4. 对于教育机构,可将产品作为学生职业指导一部分,帮助了解 AI 领域职业机会和发展路径,优化课程设置提供针对性培训。 5. 对于职业咨询师,可将产品作为辅助工具为客户提供更精准规划建议和技能评估,基于产品数据提供更全面前瞻性指导。
2024-12-24
我想使用ai开展第二职业,该如何规划实施?
以下是关于使用 AI 开展第二职业的规划实施建议: 1. 努力工作:不仅要增加工作时间,还要提升专注程度。可以有意识地与能力强且令人钦佩的人合作,学习他们的研究品味和思考方式。 2. 研究本身及周期:涉及研究课题的选择、研究工作的开展以及成果的宣传等所有部分。 3. 了解模型:深入了解 AI 模型的行为和局限性,以便更好地引导研究方向和做出正确决策。 4. 评估能力:明确语言模型在各种任务中的评价指标,这是研究人员需要优化的目标函数。 5. 针对自身情况: 学生和应届毕业生:通过产品了解 AI 技术在不同职业中的应用,评估兴趣和技能,选择合适职业路径并制定详细规划;根据职业目标获得个性化学习建议和资源,提升 AI 领域技能。 职场新人和职业转换者:职场新人根据自身职业目标和市场需求制定发展计划,明确短期和长期目标;职业转型者可获取详细转型路径和必要技能培训资源。 企业:利用产品评估应聘者 AI 技能水平,为现有员工制定个性化职业发展计划,提供持续指导和培训。 教育机构:将相关产品作为学生职业指导一部分,优化课程设置,提供针对性 AI 技能培训。 职业咨询师:使用产品为客户提供更精准规划建议和技能评估,基于市场数据和趋势分析提供全面前瞻性指导。
2024-12-24
我想系统性的,由浅入深的学习AI知识,请给出我一个规划
以下是为您制定的由浅入深系统性学习 AI 知识的规划: 一、基础阶段 1. 编程语言学习 选择 Python 或 JavaScript 等编程语言,学习编程语法、数据结构和算法等基础知识,为后续的 AI 学习打下坚实基础。 2. 了解 AI 基本概念 阅读相关入门文章,熟悉 AI 的术语、基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 二、入门阶段 1. 学习路径引导 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。 2. 体验 AI 工具和平台 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 三、深入学习阶段 1. 选择感兴趣的模块 AI 领域广泛,包括图像、音乐、视频等。根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且实用。 2. 学习 AI 基础知识 了解 AI 的发展历程、主要技术(如机器学习、深度学习等)。 学习 AI 在教育、医疗、金融等领域的应用案例。 四、实践阶段 1. 参与实践项目 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 2. 分享与交流 在知识库分享自己实践后的作品和经验,与他人交流学习。 五、前沿关注阶段 1. 关注动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,按照以上规划,从编程基础、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,您将逐步深入 AI 领域,为未来的发展做好准备。
2024-12-24
请写一份基于人工智能的智能家居安防系统建设方案,包括项目介绍、商业模式、、竞品分析、行业分析、经营规划、风险评估、融资规划等。
以下是为您生成的基于人工智能的智能家居安防系统建设方案: 项目介绍: 智能家居安防系统是利用人工智能技术,对家居环境进行实时监控和安全防护的系统。它融合了智能硬件、智能软件、智能网联和服务平台等技术,旨在提升家居安防的效率和可靠性。 商业模式: 可以采用设备销售与服务订阅相结合的模式。销售智能安防设备获取收入,同时提供定期的维护和升级服务,用户按需订阅。 竞品分析: 目前市场上的竞品主要包括传统安防企业的智能化产品和新兴科技公司的创新方案。传统企业可能在硬件制造和渠道方面有优势,新兴公司则在技术创新和用户体验上有所突破。 行业分析: 智能家居安防市场正处于快速发展阶段。随着人们对生活品质和安全的重视,需求不断增长。同时,技术的进步也为行业发展提供了有力支持。 经营规划: 1. 产品研发:不断优化智能安防设备的性能和功能。 2. 市场推广:通过线上线下多种渠道进行宣传和推广。 3. 客户服务:建立完善的售后服务体系,提高用户满意度。 风险评估: 1. 技术风险:如技术更新换代快,需要持续投入研发。 2. 市场风险:竞争激烈,市场份额可能受到挤压。 3. 法律风险:需符合相关法律法规和标准。 融资规划: 根据项目的发展阶段和资金需求,制定合理的融资计划。可以考虑天使投资、风险投资、银行贷款等多种融资渠道。 需要注意的是,以上方案仅为初步框架,具体内容还需要进一步深入调研和细化。
2024-12-11
我需要制作一个低成本刷航段的规划智能体
很抱歉,目前没有关于制作低成本刷航段规划智能体的相关内容。但一般来说,要制作这样的智能体,您可能需要考虑以下几个方面: 1. 数据收集:收集有关航班、票价、航线等相关信息。 2. 算法设计:运用合适的算法来优化航段选择和成本计算。 3. 规则设定:明确刷航段的规则和限制,以确保合法合规。 4. 成本评估:准确评估各种方案的成本,包括机票价格、附加费用等。 由于缺乏具体的案例和详细信息,以上只是一些初步的建议,希望能对您有所帮助。
2024-12-07
有什么AI工具可以帮助我重新规划目前的工作流?
以下是一些可以帮助您重新规划工作流的 AI 工具和相关信息: 1. 各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,颠覆了传统搜索引擎,辅助高效处理信息。 2. 智能摘要功能,能帮助您快速筛选信息,实现信息降噪。 3. 自然语言生成图片的工具,极大降低了创作门槛和周期。 4. 对于产品经理来说,可以使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。但每个人应先了解自己的日常工作流,再根据工作节点线索找到适合自己的工具。 5. 大模型利用「网页搜索」工具的典型例子,如 Kimi Chat 会在互联网上检索相关内容并总结分析给出结论。 6. Agent 可以通过自行规划任务执行的工作流路径,面向简单或线性流程运行。 7. 吴恩达通过开源项目 ChatDev 举例,一个大语言模型可以扮演不同角色相互协作,共同开发应用或复杂程序。 8. OpenAI 的研究主管 Lilian Weng 提出 Agent 的基础架构为“Agent = LLM + 规划 + 记忆 + 工具使用”,其中大模型 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期记忆和长期记忆。 总之,您需要先明确自身工作流特点,再选择合适的 AI 工具来优化。
2024-12-05
小白从0学习ai的教程在哪里
以下是为小白从 0 学习 AI 提供的教程和建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于零基础小白: 网上有很多基础课程,您可以找找相关教程。 看一些科普类教程,比如相关视频。 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 推荐一些练手的 Prompt 工具和相关教程文档。 7. 推荐视频: 【包教包会】一条视频速通 AI 大模型原理_哔哩哔哩_bilibili:https://www.bilibili.com/video/BV17t4218761/?vd_source=3cc4af77a2ef185635e8097d3326c893 由(女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课,新手友好,带你 50 分钟速通 AI 大模型原理。 用大模型保存你的全部人生,你会接受吗:专访安克创新 CEO 阳萌|大咖谈芯第 11 期_哔哩哔哩_bilibili:https://www.bilibili.com/video/BV1iT421Q7M1 某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,视频链接是第二期。两期内容都值得观看,访谈非常硬核。
2024-12-27
怎么学习制作智能体
学习制作智能体可以从以下几个方面入手: 1. 了解智能体的基本概念: 智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。 基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。 智能体的核心在于有效控制和利用大型模型,提示词设计会直接影响其表现和输出结果。 2. 实践操作: 基于公开的大模型应用产品(如Chat GLM、Chat GPT、Kimi等)尝试开发。 具体步骤包括:点击“浏览GPTs”按钮,点击“Create”按钮创建,使用自然语言对话或手工设置进行具体设置,然后调试并发布。 3. 智能体的应用领域: 自动驾驶:感知环境并做出驾驶决策。 家居自动化:根据环境和用户行为自动调节。 游戏AI:游戏中的对手角色和智能行为系统。 金融交易:根据市场数据做出交易决策。 客服聊天机器人:提供自动化的客户支持。 机器人:各类机器人中的智能控制系统。 4. 智能体的设计与实现: 定义目标:明确需要实现的目标或任务。 感知系统:设计传感器系统采集环境数据。 决策机制:定义决策算法并根据感知数据和目标做出决策。 行动系统:设计执行器或输出设备执行决策。 学习与优化:对于学习型智能体,设计学习算法以改进。 此外,在智谱BigModel共学营第二期的课程中,您可以按照以下步骤打造微信助手: 1. 注册智谱Tokens智谱AI开放平台:https://bigmodel.cn/ 。 2. 获取资源包,方式包括新注册用户赠送、充值/购买、共学营报名赠送。 3. 前往【财务台】左侧的【资源包管理】查看资源包,本次项目会使用到GLM4、GLM4VPlus、CogVideoX、CogView3Plus模型。 4. 进入智能体中心我的智能体,开始创建智能体。
2024-12-27
我如何使用AI学习英语
以下是使用 AI 学习英语的一些方法: 1. 智能辅助工具:利用 AI 写作助手如 Grammarly 进行英语写作和语法纠错,以改进英语表达和写作能力。 2. 语音识别和发音练习:使用语音识别应用如 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用自适应学习平台如 Duolingo,其利用 AI 技术为您量身定制学习计划,提供个性化的学习内容和练习。 4. 智能导师和对话机器人:利用智能对话机器人如 ChatGPT 进行英语会话练习和对话模拟,提高交流能力和语感。 5. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 6. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 7. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 此外,还有一些学习方法建议: 1. 设定目标:明确学习目标和时间表,分阶段完成学习任务。 2. 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 3. 模拟真实环境:尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-27
AI赋能英语学习资料
以下是关于 AI 赋能英语学习的资料: 智能辅助工具:利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错,帮助改进英语表达和写作能力。 语音识别和发音练习:使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获取实时反馈和建议。 自适应学习平台:使用自适应学习平台(如 Duolingo),借助 AI 技术量身定制学习计划,提供个性化学习内容和练习。 智能导师和对话机器人:利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提升交流能力和语感。 中考英语方面: AI 在英语各题型表现优异,如阅读理解、7 选 5、完形填空、语法填空等基本接近满分,作文扣分稍多,总分得分率在 90%以上,且模型升级后能力更强。 AI 辅导学英语具有可行性和诸多优势,包括个性化、保障教学质量、免费等,但要掌握使用的思维和方法。 用 AI 辅助中考英语读写学习,要注重方法和环节分析。 此外,9 月 2 日徐阳谈辅助英语学习时提到: 学英语要根据个人目的和需求选择不同的学习路径。 多邻国更适合 B2 以下水平,Call Annie 或 PI 练口语存在学习反馈不足、对话不够口语化、难找到可持续交流话题等问题。 目前的 AI 口语练习工具还只是伙伴,发展成导师可能需要半年以上时间。 英语学习重点是“有效输入”,然后是理解后输出,可以尝试不开字幕听优质播客、每天熟读并背诵短文等方法。
2024-12-27