Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

聊聊ai的发展

Answer

AI 的发展历程如下:

  1. 智能起源:早期的其他 AI 更多应用于完成人脸识别等分类判断任务,充满机器感。而生成式 AI 的诞生带来了变革,它能像人一样创作交流,在写文章、画画、写歌等方面展现出人类般的智慧,能力惊人。
  2. 发展阶段:
    • 早期阶段(1950s - 1960s):专家系统、博弈论、机器学习初步理论。
    • 知识驱动时期(1970s - 1980s):专家系统、知识表示、自动推理。
    • 统计学习时期(1990s - 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。
    • 深度学习时期(2010s - 至今):深度神经网络、卷积神经网络、循环神经网络等。
  3. 当前前沿技术点:
    • 大模型(Large Language Models):如 GPT、PaLM 等。
    • 多模态 AI:视觉 - 语言模型(CLIP、Stable Diffusion)、多模态融合。
    • 自监督学习:自监督预训练、对比学习、掩码语言模型等。
    • 小样本学习:元学习、一次学习、提示学习等。
    • 可解释 AI:模型可解释性、因果推理、符号推理等。
    • 机器人学:强化学习、运动规划、人机交互等。
    • 量子 AI:量子机器学习、量子神经网络等。
    • AI 芯片和硬件加速。

如果希望在 AI 领域继续精进,还可以尝试了解以下基础内容:

  1. AI 背景知识:
    • 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
    • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  2. 数学基础:
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等线性代数基本概念。
    • 概率论:基础的概率论知识,如条件概率、贝叶斯定理。
  3. 算法和模型:
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:简介强化学习的基本概念。
  4. 评估和调优:
    • 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。
    • 模型调优:学习如何使用网格搜索等技术优化模型参数。
  5. 神经网络基础:
    • 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。
    • 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

过去的其他AI,更多的应用成果是完成诸如人脸识别这样分类判断的任务,虽然方便了我们的生活,但在使用的过程中,我们能够清晰的感受到他不是人,而是充满机器感的僵硬程序。生成式AI的诞生,让我们看到原来AI可以和人一样创作交流,他没有像一些人期待的那样,最先做好擦桌子扫地的基础工作任务,而是在写文章、画画、写歌等方面涌现出人类般的智慧,其表现出的惊人能力,把一众平凡的人类个体“碾压的渣都不剩”。图4什么是生成式AI-1篇幅所限,更多有趣的知识和故事我们不做更多的展开了,关于AI发展史,我们就聊到这里。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

写给不会代码的你:20分钟上手 Python + AI

对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

Others are asking
那么,在这个网站里是否有可以满足我需求的AI工具呢?
以下是一些可能满足您需求的 AI 工具: TXYZ 网站:是一个帮助搜索、查询专业文献并进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。它是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 TXYZ 的按钮。用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到自己想要的答案和内容,并在对话中提供论文参考,给出可信的背书。 辅助编程的 AI 工具: GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 制作网站的 AI 工具选择考虑因素: 目标和需求:确定您的网站目标(例如个人博客、商业网站、在线商店)和功能需求。 预算:有些工具提供免费计划或试用版,但高级功能可能需要付费订阅。 易用性:选择一个符合您技术水平的工具,确保您能够轻松使用和管理网站。 自定义选项:检查工具是否提供足够的自定义选项,以满足您的设计和功能需求。 支持和资源:查看是否有足够的客户支持和学习资源(如教程、社区论坛),帮助您解决问题。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-28
我想用AI应用工具来写小说,你推荐哪些?
以下是为您推荐的可用于写小说的 AI 应用工具: 1. 文本生成工具: ChatGPT:可用于分析小说内容、生成情节和角色描述等。 2. 图像生成工具: Stable Diffusion:能基于文本描述生成图像,适用于创建小说中的场景和角色形象。 Midjourney:可生成小说中的场景和角色图像。 3. 音频制作工具: Adobe Firefly:可将小说文本转换为语音,并添加背景音乐和音效。 4. 视频生成和编辑工具: Pika AI:文本生成视频的 AI 工具,适合动画制作。 Clipfly:一站式 AI 视频生成和剪辑平台。 VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 故事 AI 绘图:小说转视频的 AI 工具。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-12-28
AI的视频工具有哪些
以下是一些常见的 AI 视频工具: 1. Pika:https://pika.art/ 2. Pixverse:https://pixverse.ai/ 3. Runway:https://runwayml.com/ 4. SVD:https://www.stablevideo.com/ 5. ChatGPT(https://chat.openai.com/)+ 剪映(https://www.capcut.cn/):ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架。 6. PixVerse AI:https://pixverse.ai/,在线 AI 视频生成工具,支持多模态输入转化为视频。 7. Pictory:https://pictory.ai/,AI 视频生成器,用户提供文本描述即可生成相应视频内容。 8. VEED.IO:https://www.veed.io/,提供 AI 图像和脚本生成器,帮助规划视频内容。 9. 艺映 AI:https://www.artink.art/,专注于人工智能视频领域,提供多种服务,可根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-28
想要一个AI 切片的工具
以下为您介绍一些 AI 切片工具及相关内容: 有 Pika、Pixverse、Runway、SVD 这四大 AI 视频工具可用于制作 AI 短片。 制作 AI 短片时,故事来源可以是原创(如自身或周围人的经历、做过的梦、想象的故事等),也可以是改编(如经典 IP、名著、新闻、二创等)。 对于剧本写作,虽然有一定门槛,但关键在于多写多实践,再结合看书总结经验。短片创作可从自身或朋友经历改编入手,或对短篇故事进行改编,多与他人讨论也有助于改进。 在生成视频内容方面,如科幻片、战争片、奇幻片等,都有相应的画面描述和对应的工具生成效果。 写剧本时,分镜很重要,要尽量按照正规格式写准确。 生图时,Midjourney 的语义理解有所提升。为保持人物和场景一致性,可采用生成动物或特定名人/有特殊属性人物的方式。确定影片风格和人物形象也很关键,例如选择皮克斯动画风格,并明确主要角色的特征。
2024-12-28
学习AI
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-28
ai可以如何帮忙撰写 产品需求文档
以下是一些利用 AI 帮忙撰写产品需求文档的工具和方法: 1. :可以生成产品需求文档(PRD)的原型图、解决方案流程图、时序图、页面结构图、测试用例等,还能帮助生成数据字段、优化 PRD 文档、评估功能的价值、生成 SQL 代码和周报思路等。 2. ChatPRD、WriteMyPRD、Uizard、tldraw 等工具:可以通过人类语言描述想要的产品,得到 80%的完成稿,然后进行修改和发布。 3. 产品经理还可以借助一些其他相关的 AI 工具,如: :用于个性化调色。 :将博客文章转化为播客。 :高效存储和检索图片。 此外,Lenny 认为人工智能(AI)将对产品管理的高级技能产生影响,如在产品塑造工作方面,AI 可通过分析市场、数据、客户需求和未来的见解制定超级智能的计划,产品经理则要擅长选择合适的数据和提出正确问题。在目标设定和跟踪方面,AI 工具能基于战略、业务要求和限制智能地建议应优化的目标,产品经理成为超级智能建议的编辑者。 同时,还有一些针对产品经理的其他 AI 工具集,如: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard() 项目管理:Taskade(taskade.com) 写邮件:Hypertype() 会议信息:AskFred() 团队知识库:Sense() 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI() 企业自动化:Moveworks(moveworks.com)
2024-12-28
聊聊ai的发展
AI 的发展历程如下: 1. 智能起源:早期的 AI 更多应用于完成人脸识别等分类判断任务,充满机器感。 2. 生成式 AI 的诞生:在写文章、画画、写歌等方面展现出类似人类的智慧,能力惊人。 3. 发展阶段: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 4. 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 对于希望继续精进 AI 的人,可以尝试了解以下基础内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-27
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
人工智能主播的发展现状
目前,人工智能主播的发展呈现出以下现状: 1. 聊天机器人作为人工智能伴侣已存在数十年,如今在一对一对话中有了跃进式改进,并融入到人们的社交生活中。 2. 像 CarynAI 这样由网络红人创建的语音聊天机器人,用户需付费与其交流,且能带来可观收益。 3. 拥有人工智能伴侣虽看似小众,但已成为生成式人工智能的主要应用案例,成千上万甚至数百万人已建立并培养了与聊天机器人的关系,且这一趋势有望使 AI 伴侣变得普遍。 4. 许多受欢迎的应用场景与浪漫相关,精明的生成模型消费者通过一些平台打造虚拟伴侣,并寻找规避审查的工具,甚至存在拥有数万用户的地下伴侣托管服务。 5. 除了与浪漫相关的应用,还出现了更广泛的应用领域,如 Snapchat 中的聊天机器人,人们会就宠物、流行文化新闻和足球等热门话题进行交流。
2024-12-25
chatgpt发展历史
ChatGPT 的发展历史如下: 在过去的一年里,许多人已主动或被动地了解了 ChatGPT,不少人可能已使用过。它能在人类生活的各个方面发挥作用。 2022 年,OpenAI 宣发时称 ChatGPT 是一种模型,其官网帮助页面称 ChatGPT 是一种服务,目前所熟知的 ChatGPT 逐渐演变成了一种可兼容多种 GPT 模型的聊天应用(服务)。 2022 年 8 月,GPT4 完成训练,是 OpenAI 的旗舰项目,强调指令遵循能力,但存在可靠性问题。 OpenAI 团队曾把产品给朋友和家人使用并考虑公开发布,之后减少对浏览功能的侧重。 团队将指令型数据和聊天数据混合,希望创造出既可以处理具体任务又能流畅聊天的模型,发现 chat 模型使用更简单,能更好地了解并处理潜在局限性,展现出更连贯的特征和更稳定的行为。
2024-12-25
ai工具在行业的运用以及未来的发展
AI 工具在行业中的运用十分广泛,以下为您详细介绍: 1. 客户服务领域: OpenAI 的 ChatGPT 等生成式人工智能应用程序在不到一年的时间里掀起革命,能以类似人类的方式处理并回答复杂问题,预计将使客户服务中心生产力提高 30%到 50%。 各行业公司已开始探索将生成式 AI 融入客户服务中心,如 Octopus Energy 引入后显著提高了电子邮件回复质量和客户满意度,带来更丰富全面的服务体验。 但发展中存在挑战,如受数据训练内在偏见影响产生不准确结果,目前阶段通常需要人工监督。预计其融入将经历几个阶段,最终几乎能在每个用户旅程中提供支持。 2. 医疗领域:利用大模型生成合成数据,如微调 Stable Diffusion 中的 UNet 和 CLIP 文本编码器,从大量真实胸部 X 射线及其报告生成大型数据集,产生高保真度和概念正确的合成 X 射线扫描数据,用于数据增强和自监督学习。 3. 机器人领域:苹果 Vision Pro 在机器人研究领域引起轰动,其高分辨率、高级跟踪和处理能力被用于远程操作控制机器人的运动和动作。 4. 企业自动化领域:传统机器人流程自动化面临高昂成本等问题,新方法如 FlowMind 和 ECLAIR 使用基础模型解决限制。FlowMind 专注金融工作流,通过 API 使用 LLM 生成可执行工作流,在工作流理解方面准确率高;ECLAIR 采取更广泛方法,使用多模态模型从演示中学习,直接与企业环境中的图形用户界面交互,提高网页导航任务完成率。 5. 小型企业领域:工具服务小型企业将是生成式 AI 的一个杀手级用例。AI 工具可为小型企业带来即时影响,如 Sameday 可接电话预约,Truelark 处理短信等,许多通用内容创建工具在中小企业中已获显著用户基础,也出现为特定类型企业工作流量身定制的垂直化工具。 未来,AI 工具在各行业的应用有望不断深化和拓展,为经济发展和社会进步带来更多机遇和挑战。
2024-12-23
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
人工智能技术的发展历史
人工智能技术的发展历史如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):以专家系统、知识表示、自动推理为主要特点。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术得到广泛应用。 在发展过程中,人工智能也经历了一些起伏。例如,早期的符号推理方法在应用场景拓展上遇到困难,导致 20 世纪 70 年代出现“人工智能寒冬”。随着计算资源的丰富和数据的增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。 其起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。1956 年,在达特茅斯会议上,人工智能一词被正式提出,并确立为一门学科。此后近 70 年,AI 的发展起起落落。2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发了全球的 AI 浪潮。
2024-12-18