Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

广泛意义上的AI是指什么

Answer

广泛意义上的 AI 是一个多方面且难以捉摸的概念。1994 年,一组心理学家将智能定义为一种非常普遍的心理能力,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等能力。建立能够展示这种通用智能的人工系统是人工智能研究的长期目标。

在过去,任何认真计算的东西常被认为是 AI。如今,更狭义的定义认为 AI 是基于机器学习(通常通过神经网络实现),并根据给出的示例进行增量训练,且这些示例包括人类生成的科学文本的大型语料库等,或者关于世界上发生事情的实际经验的语料库,即除作为“原始学习机器”外,还能从大量与人类相关的知识中学到东西。

通用人工智能(AGI)在 2000 年代初流行起来,强调从“狭义 AI”到更广泛的智能概念的追求,符合 1994 年智能定义所涵盖的广泛能力,并附加了在或超过人类水平的要求。但目前没有被广泛接受的 AGI 定义。

在生成式 AI 的下一个阶段,预计推理研发成果将深入渗透到应用层。研究实验室中,推理和推理时计算将继续是重要议题。多代理系统可能会成为建模推理和社会学习过程的主流方式。当一个通用 AI 系统展现出超越人类的思考和决策时,或许就是通用人工智能(AGI),但这并非单一的奇迹,而是技术发展的下一个阶段。

Content generated by AI large model, please carefully verify (powered by aily)

References

生成式人工智能的行动 o1

在生成式AI的下一个阶段,我们预计推理研发的成果将快速且深入地渗透到应用层。过去,很多认知架构依赖于巧妙的“解锁”技术;而随着这些能力逐渐深度嵌入到模型中,自主应用程序的复杂性和稳健性将会迅速提升。在研究实验室中,推理和推理时计算将继续成为未来的重要议题。随着新的扩展法则的出现,新的竞赛已经开始。但在特定领域中,获取真实世界的数据并构建领域和应用特定的认知架构仍然是一个巨大的挑战。这意味着,在解决现实世界中多样化问题时,“最后一公里”的应用提供商可能更具优势。展望未来,多代理系统,如Factory的“机器人”,可能会成为建模推理和社会学习过程的主流方式。一旦AI能够执行工作,我们将能组建团队,让“工人”完成更多任务。我们所期待的,是生成式AI的“第37步”时刻——就像AlphaGo在与李世石对战的第二局中出人意料的那一步棋。当一个通用AI系统展现出超越人类的思考和决策时,那一刻便会到来。这并不意味着AI将“觉醒”(AlphaGo并没有),而是AI在感知、推理和行动的模拟过程中,能够以全新的方式进行探索。这或许就是通用人工智能(AGI),但如果是这样,它并不会是单一的奇迹,而是技术发展的下一个阶段。

报告:GPT-4 通用人工智能的火花

Introduction智能是一个多方面而难以捉摸的概念,长期以来一直挑战着心理学家、哲学家和计算机科学家。1994年,一组52名心理学家签署了一份有关智能科学的广泛定义的社论,试图捕捉其本质。共识小组将智能定义为一种非常普遍的心理能力,其中包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等能力。这个定义意味着智能不仅限于特定领域或任务,而是涵盖了广泛的认知技能和能力——建立一个能够展示1994年共识定义所捕捉到的通用智能的人工系统是人工智能研究的一个长期而宏伟的目标。在早期的著作中,现代人工智能(AI)研究的创始人提出了理解智能的一系列宏伟目标。几十年来,AI研究人员一直在追求智能的原则,包括推理的普适机制(例如[NSS59],[LBFL93])以及构建包含大量常识知识的知识库[Len95]。然而,最近的许多AI研究进展可以描述为「狭义地关注明确定义的任务和挑战」,例如下围棋,这些任务分别于1996年和2016年被AI系统掌握。在1990年代末至2000年代,越来越多的人呼吁开发更普适的AI系统(例如[SBD+96]),并且该领域的学者试图确定可能构成更普遍智能系统的原则(例如[Leg08,GHT15])。名词「通用人工智能」(AGI)在2000年代初流行起来(见[Goe14]),以强调从「狭义AI」到更广泛的智能概念的追求,回应了早期AI研究的长期抱负和梦想。我们使用AGI来指代符合上述1994年定义所捕捉到的智能广泛能力的系统,其中包括了一个附加的要求,即这些能力在或超过人类水平。然而,我们注意到并没有一个被广泛接受的AGI定义,我们在结论部分讨论其他定义。

沃尔夫勒姆:人工智能能解决科学问题吗?

So what do I actually even mean by“AI”here?In the past,anything seriously computational was often considered“AI”,in which case,for example,what we’ve done for so long with our Wolfram Language computational language would qualify—as would all my“ruliological”study of simple programs in the computational universe.But here for the most part I’m going to adopt a narrower definition—and say that AI is something based on machine learning(and usually implemented with neural networks),that’s been incrementally trained from examples it’s been given.Often I’ll add another piece as well:that those examples include either a large corpus of human-generated scientific text,etc.,or a corpus of actual experience about things that happen in the world—or,in other words,that in addition to being a“raw learning machine”the AI is something that’s already learned from lots of human-aligned knowledge.那么我在这里所说的“人工智能”到底是什么意思呢?在过去,任何认真计算的东西通常都被认为是“人工智能”,在这种情况下,例如,我们长期以来使用Wolfram语言计算语言所做的事情就符合资格——就像我对简单程序的所有“规则学”研究一样。计算宇宙。但在这里,我将在很大程度上采用更狭义的定义,并说人工智能是基于机器学习(通常通过神经网络实现)的东西,它是根据给出的示例进行增量训练的。我通常还会添加另一件事:这些例子要么包括人类生成的科学文本的大型语料库等,要么包括关于世界上发生的事情的实际经验的语料库,或者换句话说,是在除了作为“原始学习机器”之外,人工智能还可以从大量与人类相关的知识中学到东西。

Others are asking
利用AI进行赚钱的示例
以下是一些利用 AI 进行赚钱的示例: 1. 在艺术创作领域,生成式 AI 使想象变为现实。例如通过 Lensa 等应用,生成肖像画等各种内容,创作者或个体创业者可借此实现盈利。 2. 对于 GPTs/GLMs ,虽然能赚钱,但大多数人难以做到。可以从最俗气的“钱”的角度,以 AI 产品经理的角色复盘 2023 年的所见所闻所感来探讨 AI 赚钱(应用落地)这件事。比如分析相关数据,了解其实际对话次数等情况。
2025-02-03
OpenAI总融资额是多少
OpenAI 的总融资额有所不同。根据相关报道,OpenAI 完成了 66 亿美元的融资,总筹资已达 130 亿美元,公司估值达 1570 亿美元。本轮融资由 Thrive Capital 领投,Tiger Global 和软银等参与。
2025-02-03
最新AI行业有哪些融资事件
以下是最新 AI 行业的一些融资事件: 据《2024 年度 AI 十大趋势报告》,2024 年国内 AI 行业融资总金额增加,但事件数同比下降,马太效应明显,资本更青睐热点和高成熟度赛道。其中智能驾驶在各细分赛道中独占鳌头,投资事件数量和金额总数远超其他赛道,且多家企业成功 IPO。AI+教育、AI+游戏、AI+医疗等赛道投资总额也有增长。政府积极推进 AI 原生行业发展,北京、上海、武汉等城市出台系列政策吸引人才和企业,国家队频繁出手投资。 AIGC Weekly28 报道:Celestial AI 融资 1 亿美元用于使用基于光的互连传输数据;Zenarate 融资 1500 万美元,其为提供 AI 模拟培训平台的公司;Augmedics 获得 8250 万美元,用于使用 AR 和 AI 进行脊柱手术;CalypsoAI 筹集了 2300 万美元,用于生成 AI 模型的护栏。 近期热门融资 AI 产品速递中,包括多种搜索模式且重隐私的搜索引擎 You.com、通过 Sparkpages 来满足用户个性化搜索需求的 Genspark、刚被 OpenAI 收购的提供实时搜索和分析数据库服务的 Rockset、人类与 AI 共存的社交软件 Butterflies AI、可以对销售通话进行记录和辅导的 AI 助手 MeetRecord 等。
2025-02-03
AI在营销上的应用
以下是关于 AI 在营销上的应用的相关内容: 营销 AI 产品: 1. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,可用于制作营销视频、产品演示等。 2. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 3. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 4. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 5. Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总的来说,这些 AI 工具能够帮助营销人员高效创作各种营销内容,提高工作效率。用户可根据实际需求选择合适的工具。 2025 年数字营销十大趋势: 预计在 2025 年,数字营销的核心会围绕 AI 技术,用户习惯,效率提升,聚焦在五大模块,每一模块下延展出不同趋势,推动品牌在未来市场中建立深厚的竞争力。AI 将继续成为未来数字营销的基石,但它的使用需要具备战略性和明确的目的,以确保品牌的真实性不受影响,避免出现“贬值”效果。品牌在 AI 技术的应用上应追求提升用户体验,而非简单地追逐技术潮流。预计到 2025 年,全球 AI 在数字营销领域的市场规模将达到 1260 亿美元,采用 AI 技术的公司在广告点击率上提高了 35%,广告成本减少了 20%,显示出 AI 在提升效率和成本优化方面的作用。 生成式人工智能在营销中的应用案例: 1. 亨氏使用番茄酱瓶的图像和与亨氏类似的标签来论证“这就是人工智能眼中‘番茄酱’的样子。 2. 雀巢使用维米尔画作的人工智能增强版来帮助销售其酸奶品牌之一。 3. Stitch Fix 是一家服装公司,正在使用 AI 向客户推荐特定服装,并尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 4. 美泰正在使用该技术生成用于玩具设计和营销的图像。
2025-02-03
如何利用AI高效读书
以下是关于如何利用 AI 高效读书的一些方法和建议: 1. 对于读书时遇到的有触动但需批判性思考和怀疑的文本,可将其整理归纳、标记重点、打上标签并放入笔记系统,准备展开深度思考和实践。 2. 以深度思考的问题为例,践行 AI 对人的赋能模式,如通过 AI 信息杠杆,利用 AI 搜索引擎和大模型,迅速掌握相关知识并完成相关思考。 3. 基于上述实践,生成自己的观点和决策,并将其打造成体系化的内容产品,实现价值。 4. 通过一个碎片化知识在左侧知识库中的“点、线、面、体”式的流转,把“别人说的话”变成“自己的智慧”。 此外,利用 AI 进行英语学习和数学学习的方法如下: 英语学习: 1. 利用智能辅助工具(如 Grammarly)进行英语写作和语法纠错,改进英语表达和写作能力。 2. 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获取实时反馈和建议。 3. 借助自适应学习平台(如 Duolingo),利用 AI 技术获得量身定制的学习计划和个性化学习内容。 4. 运用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 使用自适应学习系统(如 Khan Academy),结合 AI 技术获取个性化的数学学习路径和练习题。 2. 利用智能题库和作业辅助工具(如 Photomath),通过图像识别和数学推理技术获取数学问题的解答和解题步骤。 3. 借助虚拟教学助手(如 Socratic),利用 AI 技术解答数学问题、获取教学视频和答疑服务。 4. 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 还可以通过 Coze 和飞书多维表格打造专属 AI 智能体来提高知识管理效率,其核心看点包括一键无感收藏、自动整理稍后读清单、智能匹配兴趣并推荐相关内容、定制阅读计划、自动标注内容看点等,适合对 AI 智能体和知识管理感兴趣但可能没有技术背景的读者。如果只是想使用该工具,也有搭建好的开箱即用的 Coze Bot 可供直接上手,获取方式为 https://www.coze.cn/s/irQFQbwA/ 。
2025-02-03
目前最好用的AI是那款
目前,在 AI 领域没有绝对意义上“最好用”的单一产品,不同的 AI 模型和工具在不同方面各有优势。 像 GPT4 这样的高级模型功能全面,还具备代码解释器等特色功能。Anthropic 公司开发的 Claude 3 Opus 在写作和深度洞察方面备受好评。Google 的 Gemini Advanced 擅长提供清晰的解释。 此外,国产的 Kimi 智能助手也是一个不错的选择,它不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解表现出色。 在笔记本电脑方面,截止 2024 年 5 月,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。一些知名品牌包括微软第 11 代 Surface Pro、微星 Creator/Workstation 系列、技嘉 Aero/Aorus 系列、戴尔 Precision 移动工作站、惠普 ZBook 移动工作站、联想 ThinkPad P 系列等。这些笔记本通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存和高速固态硬盘,还预装了相关深度学习框架和开发工具,但价格相对较高,通常在 2000 美元以上,用户可根据自身需求和预算选择合适型号,并关注散热、续航等实际使用体验。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-03
AI对于普通人的具体意义是什么?
AI 对于普通人具有多方面的重要意义: 1. 工作效率提升:能处理重复性和繁琐的日常任务,例如编写程序或脚本。 2. 创新解决方案:开启无限可能性,从自动化日常任务到创造创新性成果。 3. 融入工作生活:一定程度上缓解工作中的交互问题,融入日常工作场景。 4. 减轻劳动负担:将人从重复性劳动中抽离,节省时间和精力。 5. 个性化服务:如为小朋友制作游戏或智能硬件,创造独特体验。 6. 医疗领域:在初诊、获取医疗数据、降本等方面发挥作用,提供“人体健康模型”的可能性。 同时,AI 应用是技术驱动的,目前产品能做的事情还较有限。在一些领域,如医疗,短期内仍存在一些问题,如医生使用 AI 助手动力不足等。但从长远来看,AI 有着广阔的发展空间和想象空间。
2025-01-15
如何创造有意义的短视频
以下是关于如何创造有意义的短视频的相关内容: 一、AI 主题自媒体短视频创作工作坊 1. 概述 旨在通过创作以 AI 为主题的自媒体短视频,全面锻炼参与者的创意、策划、制作、写作和团队合作能力。参与者将运用多种手段,结合热点话题,创建引人入胜的内容。 2. 目的 全面提升参与者的综合能力,包括多元技能应用、热点话题把握和创意写作(Prompt Crafting)。 整合视频制作、内容策划、写作、视觉设计等多种技能,创作出具吸引力的短视频。 紧跟社会热点,将这些元素融入视频内容,提升作品的时效性和吸引力。 编写有效的 prompts,引导团队或 AI 在视频制作中发挥创意。 3. 创意内容的多样性 鼓励各种形式的创意内容,例如利用虚拟形象或动画角色作为视频的一部分,增加内容的创新性。 围绕 AI 主题,探索和制作各种有趣、富有创意的视频内容。 鼓励参与者根据自己的兴趣和特长,创作个性化的视频内容。 4. 活动地点 在钱塘江边,可能是全滨江调性最好的地方。 二、Video 生成视频 1. 使用video 参数可以创建一个短视频,展示初始图形是如何生成的。 video 仅适用于图像网格,并不适用于图像放大。 video 可以与版本为 1、2、3、test 和 testp 的模型版本一起使用。 2. Video 例子 Vibrant California Poppies Botanical Sketch of Fanciful Ferns 3. 如何获取视频链接 添加video 到提示词结尾。 等任务结束后点击表情符号。 选择✉️emoji。 会在私信中收到这个视频链接。 单击链接在浏览器中查看您的视频。右键单击或长按下载视频。请注意,视频可能需要一些时间才能处理完毕,具体取决于您选择的参数和模型版本。视频大小可能较大,请确保您的设备有足够的存储空间来存储它。 三、前 Sora 时代我最想做的 AI 短片 1. 工具 除了使用 GPT4/Claude/Kimi/智谱清言/文心一言等 AI 工具之外,更重要的是确定想写的故事及来源。 2. 故事来源 路径一:原创(直接经验),包括您或您周围人的经历、您做过的梦、您想象的故事等等。 路径二:改编(间接经验),例如经典 IP/名著改编/新闻改编/二创等等。 3. 剧本写作 编剧有一定门槛,剧作理论和模版可能导致故事死板,建议从实践开始,多写多练。 短片创作可从自己或朋友的经历改编入手,也可对短篇故事进行改编。 多跟别人讨论您的故事,听取别人的感受,不用怕创意被窃取。
2025-01-12
大模型微调的目的和意义,会产生什么效果
大模型微调具有重要的目的、意义和效果,具体如下: 目的和意义: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中会有更好的表现,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本。通过专门化模型可使用更小的模型,且只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和成本。 适应特定领域需求:通用大模型在特定领域如法律或医学中的表现可能不理想,微调能优化模型在该领域的表现,使其更具专业性。 经济高效:从头开始训练具备自然语言处理能力的大模型需要大量时间和资源,小公司负担不起,微调可在现有模型基础上更经济、高效地适应新应用领域,节省成本并加快模型部署和应用速度。 效果: 优化模型参数:在特定领域的数据上训练模型,调整所有层的参数。 增强特定领域表现:使模型在特定领域的任务中表现更佳。 目前业界比较流行的微调方案是 PEFT(ParameterEfficient Fine Tuning),OpenAI 官方微调教程可参考:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-11-23
目前在TO C场景中,AI在哪前三个场景中应用最为广泛
在 To C 场景中,AI 应用较为广泛的前三个场景包括: 1. 角色扮演类产品:如“猫箱”“剧本戏”“名人朋友圈”等,在 LLM 基础上通过添加特定角色定义实现。 2. 陪伴类产品:以“星野”“Talkie”“BubblePal”等为代表,在 LLM 基础上对长短记忆进行处理,突出陪伴意义,随着时间积累知识库,使 AI 更懂用户。 3. 搜索工具类产品:像“秘塔”“360 搜索”等,本质上是 RAG 方案,部分产品会对搜索内容结构化,形成图谱或脑图。
2025-01-25
哪些领悟ai运用最为广泛
以下是一些 AI 运用广泛的领域: 1. 汽车行业: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,实现汽车自主导航和驾驶。 车辆安全系统:增强车辆安全性能,如自动紧急制动、车道保持辅助和盲点检测等。 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置。 预测性维护:分析车辆实时数据,预测潜在故障和维护需求。 生产自动化:用于汽车制造过程中的自动化生产线,提高生产效率和质量控制。 销售和市场分析:分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 电动化和能源管理:优化电动汽车电池管理和充电策略。 共享出行服务:优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:通过语音命令控制车辆功能、获取信息和娱乐内容。 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。 2. 技术与产品创新: 技术背景丰富:包括编程、算法工程、AI 应用开发、后端开发等。 产品开发与管理经验:具备互联网和 AI 产品开发及项目管理能力。 多元化应用场景:涉及 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等。 3. AI 爱好者与学习者: 处于 AI 技术初学阶段,渴望通过学习提升技能,并应用到实际工作和生活中。 广泛使用生成式 AI 工具,如 Midjourney、Stable Diffusion(SD)、Coze、GPT 等。 活跃在各种 AI 学习社群和线上线下活动中,热衷于共学与交流。 4. 内容创作与营销: 内容创作经验:包括自媒体运营者、视频博主、内容创作者,具备文案策划、视频剪辑、图文制作等创意能力。 营销策划与品牌运营:熟练掌握商业化路径,能将 AI 技术与商业化需求结合,提供解决方案。 活动策划与执行:有丰富的活动策划和运营经验,包括线下工作坊、社群活动、比赛等。
2024-11-29