Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

帮我找一个能找国外企业联系的AI

Answer

以下为您介绍一些能联系国外企业的 AI 相关信息:

  • 在聊天对话类 AI 产品中,国外知名的有 ChatGPT。它由 OpenAI 开发,是首批向公众开放的大规模商用 AI 对话系统之一,在全球范围内引起了 AI 革命。其具有开创性、良好的用户体验和强大的技术实力,但也存在局限性,如对于国内用户可能存在网络连接问题。如果身在海外或有稳定的国际网络连接,ChatGPT 是不错的选择。
  • 关于 AI 生成视频工具,国外的如 Google DeepMind 和 Meta 有所展示。Meta 的 Movie Gen 核心包含 30 亿视频生成和 13 亿音频生成模型。但报告中未对中国的相关工具展开详细说明,实际上 2024 年国内涌现了类似可灵、即梦、智谱清影等一系列生成视频工具,生成结果甚至远超国外。
Content generated by AI large model, please carefully verify (powered by aily)

References

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

Google DeepMind和OpenAI都给我们展示了强大的文本到视频扩散模型的预览。但访问仍然受到严格限制,而且他们也没有提供很多技术细节。Meta更进一步,将音频加入其中,Movie Gen的核心是一个30亿视频生成和一个13亿音频生成模型,可以分别以每秒16帧的速度生成16秒的视频,并以每秒45秒的速度生成音频片段。这些模型利用了文本到图像和文本到视频任务的联合优化技术,以及为任意长度的视频生成连贯音频的新颖扩展方法。**小编说明:**在这份报告中,原作者并没有对中国的AI生成图,生成视频的工具展开详细说明,只说明中国可灵与国外AI生成工具在竞争中。但着这并不代表中国有关该功能AI工具落后于国外。在2024年,国内涌现类似可灵、即梦、智谱清影等等一系列AI生成视频工具,其生成结果甚至远超国外,详情大家可以查看小编之前实测的[8款国内外免费AI生成视频工具对比实测!我们真的可以做到“一人搞定一部影视作品“吗?](https://link.juejin.cn/?target=https%3A%2F%2Flink.zhihu.com%2F%3Ftarget%3Dhttp%253A%2F%2Fmp.weixin.qq.com%2Fs%253F__biz%253DMzkyNTI3NTY1Ng%253D%253D%2526mid%253D2247510194%2526idx%253D1%2526sn%253D5c00bae4b0830b35881ff977d1575714%2526chksm%253Dc1cbebd5f6bc62c3607525e1e6c78384bbfde23bcaea339121db6004414ee1fe0439c9530cea%2526scene%253D21%2523wechat_redirect)

给小白的AI产品推荐

接下来,让我们把目光转向国际AI领域的明星产品——ChatGPT。这款由OpenAI开发的AI助手可以说是家喻户晓,对许多人而言,它就像是打开AI世界的第一把钥匙,引领我们步入了一个全新的智能时代。ChatGPT的成功绝非偶然。首先,它的开创性不容忽视。作为首批向公众开放的大规模商用AI对话系统之一,ChatGPT在全球范围内掀起了一场AI革命,让人工智能从实验室走入了千家万户。它不仅改变了人们对AI的认知,也为未来的技术发展指明了方向。在用户体验方面,ChatGPT可谓是精心设计。它的界面简洁直观,交互流畅自然,即使是AI领域的新手也能轻松上手。这种以用户为中心的设计理念,大大降低了普通人接触和使用AI的门槛,为AI的普及做出了重要贡献。从技术角度来看,ChatGPT的实力毋庸置疑。它背后的GPT系列模型在性能和能力上一直处于行业领先地位。无论是语言理解的深度,还是生成内容的质量,ChatGPT都展现出了令人惊叹的水平。这强大的技术基础使得ChatGPT能够应对各种复杂的任务和挑战。然而,我们也要客观地认识到ChatGPT的一些局限性。随着AI技术的飞速发展,尽管ChatGPT仍然强大,但它已不再是市场上唯一的顶级选择。其他AI公司和研究机构也在不断推出新的模型和产品,有些在特定领域甚至超越了ChatGPT的表现。此外,对于国内的用户来说,使用ChatGPT可能会遇到一些技术障碍。由于网络连接的问题,用户可能会经历连接不稳定、响应延迟等困扰,这在一定程度上影响了使用体验。总的来说,如果你身在海外或拥有稳定的国际网络连接,ChatGPT无疑是一个极佳的选择。它强大的功能、优秀的用户体验以及广泛的应用范围,使其成为AI对话领域的标杆产品。然而,对于国内用户而言,可能需要考虑一些本地化的替代方案,以获得更流畅、更便捷的使用体验。

1215 Demo Day | 首期项目收集

关于团队:核心成员base上外,主要是语言类专业。我们也积极寻求其他高校专业的同学一起做。负责人是23级荷兰语,挑战杯与互联网+两个奖项,一段十个月的AI领域的实习经历。想寻求的帮助:开发、开发、还是开发!我们比较缺能做APP、做小程序、做网页的同学,最主要是可以做UI、写交互,因为简单的网页我们自己也可以做。用户运营。想积累一批种子用户,需要不停收集反馈,以及参与一些AI活动。寻求其他外语高校的合作,不论是社团还是项目团队,我们希望与外语类院校的AI外语项目取得联系,可以互相宣发自己的产品,拓展用户圈子,共享一些知识成果。

Others are asking
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
视频背景替换的ai工具
以下是一些视频背景替换的 AI 工具: 1. AE 套模版: 插件模版网站:https://www.talkae.com/ ,可搜索 AE 插件合集并安装插件。 免费模版网站:envato(带可商用版权有证书),可淘宝代下,代下网站:https://sucai.ixling.com/login ,也可淘宝搜索小灵素材充值下载次数。 付费可商用网站:vj 师 https://www.vjshi.com/ 。 视频背景可替换成 AI 生成的素材。 2. Stability AI 推出的基于 Discord 的媒体生成和编辑工具: 具有搜索和替换功能,无需蒙版,通过搜索提示识别对象并替换,例如把猫换成狗。 创意放大功能,可将低分辨率或低质量图像放大至 4K 分辨率,同时可以附加提示。 外扩功能,在图像中添加内容以扩展空间,有五个选项,包括全面、上下左右单独扩展。 控制草图功能,将手绘草图转换为高质量图像,适用于设计项目。 删除背景功能,准确分割前景并删除背景。 基于初始图像使用 Stable Video Diffusion 生成短视频。 3. Coze 中的背景替换工具: 可以为图片替换背景图,是一个灵活运用的插件。 上传一张不带背景且主体明确的动漫人物图片,可搭配背景图片,点击试运行测试效果。选择 AI 生成能有更好效果,可搭配其他参数尝试。
2025-04-13
怎么用ai生成海报
以下是使用 AI 生成海报的方法: 1. 打开即梦 AI,选择“图片生成”功能,网址为:https://jimeng.jianying.com 。 2. 模型选择图片 2.1,输入提示词(可以直接参考以下案例提示词)。 女神节海报案例: 提示词:女神节主题,3D 设计,梦幻氛围,明亮春天场景,花田,数字 38,天空“女神节”,五彩缤纷的蝴蝶,晴朗的蓝天,茂密的绿色草地,盛开的花朵,柔和光线。 提示词:粉色主题,梦幻氛围,数字 38,心形气球,花卉装饰,玫瑰花,漂浮的花瓣,柔和的云朵,美丽的湖面倒影,奇幻风格,柔和的色调,庆祝场景。 提示词:妇女节,3D 设计,粉色主题,大号装饰数字 38,爱心,郁金香花朵,柔和光照,背景城市天际线,精致花卉装饰,优雅节日氛围,金色文字,春天氛围,细致鲜艳。 城市艺术字海报案例:输入提示词(可以直接参考案例提示词)。 3. 点击生成,几秒钟后,您的专属海报就完成啦! 另外,对于生成像杜蕾斯级别的创意海报,您要做的不是拍脑袋写创意,而是写一条能让 AI 持续产出的指令。结构化提示词如下: 输入即梦,生图即出。 输入五一劳动节后,Deepseek 生成的提示词:Durex 海报,一顶黄色安全帽作为画面唯一主视觉,帽体干净利落,贴有“ON DUTY”标签。构图强烈留白,突出物与空间的对比关系。中文主标题:“干活不止五一”,副标题:“激情工种,从不休假”,以极简设计字体排版于画面底部,右下角为 durex 品牌 logo。整体风格冷静、现代、具有隐喻张力,具有艺术海报感与品牌气质。 输入二十四节的立夏,Deepseek 生成提示词。
2025-04-13
AI 制作短视频的方法
以下是关于 AI 制作短视频的方法: 1. 确定视频风格和主题:使用 Fanbook 中的 niji6 模型及sref 指令,加上每张图片的提示词来确定视频风格的一致性。比如根据丝绸之路的古风主题确定风格和时长,然后设定故事主线和镜头。 2. 创作故事剧本和分镜头:参考分镜头的基本格式要求,按照场景、地点、镜号、画面描述、台词、音效等维度进行填充。尽可能精简人物对话,提炼重点。当缺乏画面灵感时,可以借助语言大模型,如 Kimi 来获取帮助。 3. 生成角色和场景:根据剧本中的人物性格特征和时代背景,描绘人物的提示词、上传角色参考图cref,并将角色背景扣除以便于进行角色加背景的融合生成时进行垫图操作。场景提示词从剧本中的画面描述进行提取,采用文生图模式,画面风格选择提前准备好的风格图进行垫图,上传角色图、场景背景进行参考生成,提高人物和场景的融合度。 4. 让图片动起来:使用即梦进行图生视频,上传图片至视频生成模块,用简单提示词描绘画面中的动态内容,可生成时长为 3 秒钟的画面。运镜类型可根据剧本中的镜头描绘设置,主要设置以随机运镜为主,生成速度根据视频节奏选择。 此外,根据视频脚本生成短视频的 AI 工具有多种,适用于不同的应用场景和需求,包括: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户提供文本描述来生成相应的视频内容。 4. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. Runway:能够将文本转化为风格化的视频内容,适用于多种应用场景。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-13
我要根据PPT开发一个网页,请详细提供操作步骤和选择哪一个AI工具更合适。
以下是根据 PPT 开发网页的详细操作步骤以及适用的 AI 工具: 一、生成 PDF 1. 将您的文件转换为 PDF 格式,其他文件格式也可行,但 PDF 效果更佳。 2. 若希望在文章中加入图片,需将图片转换为 Markdown 格式。 网络图片:直接复制图片的 URL,右键图片选择复制 URL,然后用 Markdown 格式写入文档。 自己的图片:使用图床服务(如 https://sm.ms/)托管图片,生成公链。 3. 插入视频:先将本地视频上传到公网(如 B 站),在视频页面寻找“分享”按钮,点击“嵌入”或“嵌入代码”选项获取 URL,用 Markdown 格式写入。 二、适用的 AI 工具 1. 爱设计 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 2. MindShow 网址:https://www.mindshow.fun//home 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 3. Process ON 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制(相对耗时) 导入方式:复制最终大纲内容到本地 txt 文件,将后缀改为.md(若看不见后缀可自行搜索开启),打开 Xmind 软件导入 md 文件,在 Process ON 导入 Xmind 文件。 输入主题自动生成大纲和要求:新增思维导图,输入主题点击 AI 帮我创作。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版再点击下载。若喜欢使用且无会员,可在某宝买一天会员。
2025-04-13
国外免费的动作模仿AI
以下为您介绍国外免费的动作模仿 AI: 在 SD 中,ControlNet 是一个强大的插件,包含姿态约束类预处理器。可以使用扩展图片的方法将图片发送到图生图进行处理,还能使用 tile 模型细化。若无法找到满足需求的动作图片,可在【扩展】【加载扩展列表】中搜索【posex】插件,或拷贝插件文件夹至指定目录并重启软件。在 ControlNet 界面,可通过拖动鼠标左键旋转视角、中键缩放视角、右键拖动视角,玩坏了还能重置镜头和动作。 Viggle 是一个有免费额度的 AI 视频工具,其网址为 http://viggle.ai,discord 免费体验地址为 https://discord.com/invite/viggle 。它支持图片+动作视频转视频、图片+文字动作描述转视频、文字转视频,可完成视频换脸。其功能包括/mix、/animate、/ideate、/character、/stylize 等,官方提供了多种动作提示词可供参考,提示词地址为 https://viggle.ai/prompt 。
2025-03-31
现在我想通过一段描述生成一段视频,那么我现在用哪一个?工具是最好的呢。我想说的是现在因为在国内访问不了国外的网站,那么国内有没有哪些应用比较功能强大的是视频生成工具。
以下是一些在国内可用且功能强大的视频生成工具: 1. VIGGLE:可以直接通过文字描述让任何静态图动起来,能做各种动作,如跳舞等。其核心技术基于 JST1 模型,能理解真实世界的物理运动原理,生成的视频很真实,还能直接文字生成视频,进行各种角色混合和动作替换。核心功能包括可控制的视频生成、基于物理的动画、3D 角色和场景创建。 2. Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 3. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。 4. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 5. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 6. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 此外,还有以下根据视频脚本生成短视频的工具: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户轻松创建和编辑高质量视频,用户提供文本描述即可生成相应的视频内容。 4. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,您可以根据自己的具体情况进行选择。需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-03-23
有哪些国外免费的大模型API可以使用
以下是一些国外免费的大模型 API 可供使用: 1. 谷歌的 Gemini 大模型(https://ai.google.dev/)(gemini 1.5),但使用可能需要给服务器挂梯子。 2. 海外版 Coze(https://www.coze.com/)的 GPT4 模型,能图片识别,使用可能需要给服务器挂梯子。 此外,还有以下相关信息: 1. 阿里的通义千问大模型接口(https://dashscope.console.aliyun.com/),创建 API key 即可使用。 2. 智谱 AI(ChatGLM)(https://open.bigmodel.cn/)、科大讯飞(SparkDesk)(https://xinghuo.xfyun.cn/sparkapi)也有免费接口,但国内的大模型大多限制一定免费额度的 Token。 对于 OpenRouter 新发布的功能 BYOK(Bring Your Own API Keys),它是个第三方 Key 集成功能,将 xAI、OpenAI、Mistral 等数十个平台的 Key 集中在一起,目前支持白“赚”的平台包括 AI Studio/Cohere/DeepSeek/Mistral/SambaNova/Together/xAI 等。 以 silicon 为例,其有众多开源模型(Yi、Qwen、Llama、Gemma 等)免费使用,另赠送 14 元体验金,有效期未知,是个人认为 API 接口方便实惠的选择。注册和使用地址为:,邀请码:ESTKPm3J。注册登录后,单击左边栏的 API 密钥,单击新建 API 密钥,单击密钥即可完成 API 密钥的复制。
2025-03-19
我想整理现在国内和国外的大语言模型产品并需要你整理差异还有时间轴
以下是对国内外大语言模型产品的整理及差异: 国内大语言模型: 通用模型:如文心一言、讯飞星火等,能够处理自然语言。 垂直模型:专注于特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。 具有代表性的项目:“悟道・天鹰”(北京智源人工智能研究院)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型;文心一言(百度)可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 国外大语言模型: 具有代表性的项目:GPT4(OpenAI)是目前最先进的自然语言生成模型,可用于回答问题、撰写文章等;Gemini Ultra(Google)是多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等;Claude 3 Opus(Anthropic)是多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。 时间轴方面: 国内:去年 7 月大模型百花齐放。 国外:相关模型也在不断发展和更新。 在工作原理上,大语言模型通常包括训练数据、算力、模型参数等要素。在训练数据一致的情况下,模型参数越大能力越强。Transformer 架构是大语言模型训练的常见架构,具备自我注意力机制能理解上下文和文本关联。同时,大模型可能存在幻觉,即因错误数据导致给出错误答案,优质数据集对其很重要。此外,Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 Prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。还可以基于通用大模型进行 Fine tuning 微调,以适应特定领域的需求。
2025-03-07
请以轨道式、巡检机器人为关键词查找国外文献十五篇,要求这些文献真实可靠并且有一定的影响力,同时附上原文链接
很抱歉,目前没有查找到以轨道式、巡检机器人为关键词的国外文献十五篇及原文链接。建议您通过以下途径进行查找: 1. 学术数据库,如 Web of Science、Scopus 等。 2. 相关领域的专业学术期刊网站。 3. 大学图书馆的电子资源库。
2025-03-06
国内有多少种网盘?自费如何?哪款网盘性价比较高?国外呢?
目前国内网盘种类众多,常见的有百度网盘、阿里云盘、腾讯微云等。其自费方式和价格各有不同。百度网盘的收费套餐多样,根据存储空间和功能有所区别;阿里云盘也有相应的付费方案;腾讯微云同样提供多种付费选择。 关于哪款网盘性价比较高,这取决于您的具体需求。如果您对存储空间需求较大,阿里云盘可能是一个不错的选择;如果您更注重资源的丰富性和分享的便捷性,百度网盘可能更适合。 国外的网盘也有不少,如 Dropbox、Google Drive 等,但在国内使用可能存在网络限制等问题。
2025-02-25
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
大模型就是指大语言模型吗?有哪些常见的非语言类大模型和小模型,两者的区别和联系是什么?
大模型并非仅指大语言模型。大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型存在以下区别: 1. 处理的信息类型不同:大型语言模型专注于文本信息,而大型多模态模型能处理多种信息类型。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,如文本翻译、生成、情感分析等;大型多模态模型可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型则需要多种类型数据。 当我们提到“小模型”时,是相对大型模型而言,规模较小。这些小模型通常是为完成特定任务而设计,比如最初用于图像分类,只能分辨是或不是某一个东西(如猫、狗)。 “小模型”在特定任务上表现出色,但“大模型”像多功能基础平台,能处理多种任务,应用范围广泛,拥有更多通识知识。 大模型并不拥有无限知识,其知识来源于训练过程中的有限数据,只能回答训练中见过或类似的问题,知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。 大型语言模型的运作机制主要是通过大量数据训练学习语言结构和模式,然后根据输入生成相应文本,类似于词语接龙游戏,永远在猜测下一个字符将要生成什么。
2025-03-16
如何搭建一个工作流来做ai agent 的事情,帮助学生找工作的整个流程,从找合适岗位-> 投递简历 -> 和hr联系 ->做面试前的search工作和面试准备-> 提醒参加面试-> 面试结果追踪,后续的复盘,得到面试经验
搭建一个用于帮助学生找工作的 AI Agent 工作流可以参考以下步骤: 1. 规划 总结任务目标与执行形式,明确帮助学生从找合适岗位到面试结果追踪及复盘的全过程。 将任务分解为可管理的子任务,例如找合适岗位、投递简历、与 HR 联系、面试前准备、提醒参加面试、面试结果追踪和复盘等,并确立它们的逻辑顺序和依赖关系。 设计每个子任务的执行方法,比如确定合适的岗位筛选标准、制定简历投递策略、规划与 HR 沟通的方式等。 2. 实施 在相应的平台(如 Coze 等)上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,例如设置岗位筛选的参数、简历模板和投递渠道、与 HR 联系的话术等,并验证每个子任务的可用性。 3. 完善 整体试运行工作流,识别功能和性能的卡点。 通过反复测试和迭代,优化工作流,直至达到预期效果,例如提高学生找到合适工作的成功率、提升面试表现等。 此外,在技术实现方面,例如实现无代码开发和工具调用,您可以参考以下操作: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的工作流,也可以直接将相关工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 从 ollama 的 github 仓库找到对应版本并下载,启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。如果 ollama 连接不上,很可能是代理服务器的问题,请将您的 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-27
大模型、小模型之间的区别和联系是什么
大模型和小模型的区别与联系如下: 区别: 类型:大模型主要分为大型语言模型和大型多模态模型,前者专注于处理和生成文本信息,后者能处理包括文本、图片、音频等多种类型的信息。 应用场景:大型语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等;大型多模态模型可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 数据需求:大型语言模型主要依赖大量文本数据训练,大型多模态模型则需要多种类型的数据,包括文本、图片、音频等。 功能:小模型通常被设计来完成特定任务,如专门识别猫或狗;大模型像多功能的基础平台,能处理多种不同任务,应用范围广泛,拥有更多通识知识。 联系: 相对比较:小模型是相对于大模型的规模而言较小。 共同作用:在不同场景中发挥各自的优势,共同为解决问题提供支持。 在 AI 绘图模型中,大模型如同主菜或主食,小模型(Lora)如同佐料或调料包,Lora 能帮助快速实现特定风格或角色的绘制,且大模型和 Lora 要基于同一个基础模型才能搭配使用,以生成各种风格的图片。
2025-02-26
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
传感器技术与智慧养老的联系
传感器技术在智慧养老中具有重要作用。在感知模块中,通过多种传感器来收集和处理信息,常见的传感器包括: 1. 可见光相机:负责收集彩色图像。 2. 红外相机:能收集热成像、进行温度测量、实现夜视和透视。可检测物体热辐射,在黑暗中生成图像,用于夜视、热成像、设备过热检测、能源审计和医学成像等,还能穿透烟雾等遮挡物用于应急救援和安全监控。 3. 深度相机:测量图像中各点与相机的距离,获取三维坐标信息。 4. 激光雷达(LiDAR):测量目标物体距离和速度,发射激光脉冲并接收反射光来计算距离,生成高精度三维点云数据,广泛应用于自动驾驶和机器人导航。 5. 超声波传感器:用于避障,通过发射和接收超声波脉冲确定机器人与障碍物的距离,判断障碍物是否存在。 6. 压力传感器:测量机器人手或脚部压力,用于行走和抓取力控制以及避障。 7. 麦克风:负责收音。 以医疗保健为例,在智慧养老场景中,智能传感器可发挥多种作用,如检测临床医生是否正确洗手后进入病人房间、跟踪手术器械、在病人面临跌倒风险时提醒护理团队等。这些技术如同额外的眼睛,为养老服务提供环境智能。还可想象自主机器人运输医疗用品、用增强现实技术引导外科医生更安全高效操作,甚至严重瘫痪病人用脑电波控制机器人完成日常任务。
2025-02-08
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
AI在企业落地
企业落地 AI 可以参考以下内容: Anthropic 在 AI Engineer Summit 2025 上分享了相关最佳实践,并总结了常见错误。核心挑战包括如何入手、如何评估效果、技术选择困惑(如是否需要微调)。关键经验是评估先行,明确“智能度、成本、延迟”之间的平衡,避免过早微调,先进行基础优化。例如 Intercom 通过评估优化 AI Agent Fin,使其处理 86%的客服请求,其中 51%无需人工介入。相关链接: 影刀 RPA+AI Power 方面:大模型有输入和输出限制,AI Power 集成丰富组件及技能组件可拓展 AI 服务能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现自动化操作。其具有无缝多样的使用方式,如嵌入方式包括网页分享、对话助理、API 集成等。企业系统分散,AI Power 提供多种调用方式方便企业灵活选择接入方式。此外,影刀 AI Power 为企业提供教学培训、技术答疑、场景共创等贴身服务支持,帮助企业把 AI 落地。 此外,相关知识库还介绍了面向学习者、创作者和企业的不同服务: 面向学习者:社区提供清晰学习路径,学习者通过丰富课程、活动和竞赛提升自己,积累能力成为高素质 AI 人才。 面向创作者:创作者掌握 AI 技术利用社区资源创作,满足企业需求,为社区发展注入活力。 面向企业:链接 AI 产品和传统企业,通过与社区合作获得优质内容与服务,从学习者中获取潜在流量。社区合作实践为学习者和创作者提供应用场景和技术经验。
2025-04-12
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
企业场景下最常用的工作流
在企业场景下,工作流是一种灵活的智能体编排方式,将业务过程中的任务按规则和顺序组织执行,降低任务复杂度和不确定性,减少对提示词工程和模型推理能力的依赖,提高大语言模型应用面向复杂任务的性能、稳定性和可解释性。工作流是智能体平台最核心强大的部分,衡量一个 AI 智能体的含金量,除大模型能力外,大部分业务价值体现在工作流设计里。 工作流的典型场景包括: 入门场景: 仅添加一个节点构建简单工作流,如通过插件节点内的插件能力自定义工作流,使用获取新闻插件构建获取新闻列表的工作流,详细配置教程可参见。 使用大语言模型(LLM)节点接收并处理用户问题,详细配置教程可参见。 使用 Code 节点生成随机数,详细配置教程可参见。 进阶场景: 通过多节点组合构建逻辑较复杂的工作流,如先通过插件能力进行关键词搜索、然后通过 Code 节点过滤指定信息、最后通过插件能力获取信息详情,详细配置教程可参见。 通过条件判断识别用户意图,例如通过 LLM 节点处理用户消息,将消息分为不同类型,然后通过 Condition 节点分别处理不同类型的用户消息,详细配置教程可参见。 常见的 AI Workflow 开发平台有: Coze:新一代 AI Bot 开发平台,集成了丰富的插件工具,国际版和国内版均有。 Dify:开源平台,支持自定义和插件。 腾讯元器。 FastGPT:国内知名,支持自定义流程。 影刀&zapier。 Leap。 Betteryeah:立足 RPA 场景,用 AI 将用户需求生成工作流,并通过 RPA 自动化,产品形态与 Coze 相似,是企业级的 AI 应用开发平台,无论团队编程技能如何,都能快速创建由 AI 驱动的 Agents、知识库、工作流和任务。 Flowise:快速实现智能体搭建。 BISHENG:主攻 tob 场景的开源 LLM 搭建平台,与 fastgpt 功能类似,但面向的客户不同,整体功能和部署成本更重。 Agent 构建平台有豆包、文心一言、星火助手、kimi.ai 等。由于 Coze 具有拓展强、好上手、不用出国等优点,本教程的工作流以 Coze 为主。
2025-04-09
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
企业场景下的AI应用
在企业场景下,AI 有以下应用: 1. 智谱 BigModel 开放平台工作流搭建: 产品概述:播放智谱 AI 智能体平台宣传片。 解决问题:大模型作为新质生产力代表,单一化模型解决能力无法满足企业多元化场景需求,打造“企业场景下要求高可用、高性能、高性价比”的 AI 应用之路存在诸多难题。 产品定位:智谱 BigModel 清流智能体开发平台定位在企业级 AI 智能体应用开发,基于智谱全模型矩阵叠加与之深度适配的智能体开发框架,面向 ToB 业务,以市场和企业落地需求驱动产品能力建设。 独特优势: 自有模型的深度适配,提供高契合度功能设计,通过模型逻辑封装和内置提示词优化,实现模型表现优于第三方平台调用的效果。 真实场景验证的高可用模板,官方模板经过 PoC 验证,能快速落地企业场景,支持企业级开箱即用。 为企业各角色提供价值。 2. 避免陷入智能陷阱,重塑决策流程: 数据陷阱与 AI 的认知扭曲:假设跨国企业使用 AI 分析不同市场数据生成销售策略,若只从特定地区收集数据,会因数据单一性导致策略失效,企业须警惕数据片面性导致的错误市场判断和策略执行。数据质量决定 AI 决策能力,历史数据常带有偏见,企业使用不完整或偏颇数据训练 AI 系统将面临决策风险,人类认知和记忆能反思修正偏见,而 AI 无法自行修正。 AI 的决策与人类独立判断:在实际企业环境中,领导者常面临平衡 AI 与人类判断的问题,如依赖基于历史趋势的 AI 数据模型在市场环境变化时可能做出错误决策,企业领导者需认识到 AI 决策不透明性,设立审核流程,如某公司全球化扩张时,AI 数据分析建议可能只针对局部市场,领导者须通过自身经验和洞察审视。 实践建议:设计“AI 决策审核流程”,包括数据源验证、算法透明度、专家审查、伦理与社会影响评估等步骤,通过增加人工审核环节,确保 AI 决策经过人类专家审查与反馈,减轻潜在偏见和不透明性。
2025-04-09