Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能发展前景

Answer

人工智能的发展前景十分广阔。

从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限性出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。

在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理,还将帮助构建更好的下一代系统,在各领域取得科学进展。

产业方面,人工智能是引领科技和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。

总之,智能时代的曙光带来了历史性发展机遇,也带来复杂高风险挑战,但潜在正面影响巨大,未来将实现巨大繁荣。

Content generated by AI large model, please carefully verify (powered by aily)

References

人工智能简介和历史

[title]人工智能简介和历史[heading1]人工智能简史人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时:

文章:Sam Altman|智能时代

[title]文章:Sam Altman|智能时代[heading2]译文简单概括:深度学习有效,随规模扩大预期改善,我们持续增加相关资源投入。就是这样;人类发现了一种算法,可以真正地学习任何数据分布(或者说,产生任何数据分布的潜在"规则")。令人震惊的是,计算能力和数据量越大,它帮助人们解决难题的能力就越强。不管我花多长时间思考这个问题,我都无法完全理解它的重要性。我们还有很多细节需要解决,但被任何特定挑战分散注意力是一个错误。深度学习是有效的,我们将解决剩余的问题。我们可以谈论很多关于下一步可能发生的事情,但主要的是,人工智能将随着规模而变得更好,这将导致对全球人民生活产生有意义的改善。人工智能模型将很快作为自主的个人助理,代表您执行特定任务,如帮助您协调医疗护理。未来,人工智能系统将变得如此出色,它们将帮助我们构建更好的下一代系统,并在各个领域取得科学进展。技术将我们从石器时代带到农业时代,再到工业时代。从这里开始,通往智能时代的道路由计算、能源和人类意志铺就。如果我们想让尽可能多的人接触到人工智能,我们需要降低计算成本,使其更加普及(这需要大量的能源和芯片)。如果我们不能建立足够的基础设施,人工智能将成为一种非常有限的资源,会导致战争,并主要成为富人的工具。我们需要聪明而坚定地采取行动。智能时代的曙光是一个历史性的发展,同时也带来极其复杂且高风险的挑战。这并非完全是个积极的故事,但潜在的正面影响如此巨大,我们有责任找出如何应对眼前的风险。我相信未来会非常光明灿烂,以至于现在任何人都无法对之进行公正的描述;智能时代的一个决定性特征将是巨大的繁荣。尽管这将逐步发生,但令人惊叹的胜利——修复气候、建立太空殖民地以及发现物理学的所有内容——最终将成为寻常。拥有近乎无限的智慧和丰富的能源——产生伟大创意和实现它们的能力——我们可以做很多事情。

国家人工智能产业综合标准化体系建设指南.pdf

人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速和实体经济深度融合,深刻改变工业生产模式和经济发展形态,将对赋能新型工业化、加快建设制造强国、网络强国和数字中国发挥重要的支撑作用。人工智能产业链包括基础层、框架层、模型层、应用层等4个部分,其中,基础层主要包括算力、算法和数据,框架层主要是指用于模型开发的深度学习框架和工具,模型层主要是指大模型等技术和产品,应用层主要是指人工智能技术在行业场景的应用。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面实现快速发展,形成庞大市场规模。伴随以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善人工智能产业标准体系。

Others are asking
李宏毅《生成式人工智能导论》课件
以下是关于李宏毅《生成式人工智能导论》的相关信息: 课程目录: 1. 第 0 讲:课程说明(2024 年 2 月 24 日) 2. 第 1 讲:生成式 AI 是什么?(2024 年 2 月 24 日) 3. 第 2 讲:今日的生成式人工智慧厉害在哪里?从「工具」变为「工具人」(2024 年 3 月 3 日) 4. 第 3 讲:训练不了人工智慧?你可以训练你自己—神奇咒语与提供更多资讯(2024 年 3 月 3 日) 5. 第 4 讲:训练不了人工智慧?你可以训练你自己—拆解问题与使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲课程说明的要点: 1. 知道:有能力自己开发、何时需要自己开发、何时可以用现成的人工智能。 2. 目标:了解生成式 AI 背后的原理和更多可能性,作为你魔术师的开始。包括体验用生成式 AI 打造应用、体验训练自己的生成式 AI 模型。同时提到负面体验,如大模型训练花时间(以周为单位)、结果不可控。 3. 影响模型能力的指标很多,常规会看参数的量级来评估,量级指数级增长,FOMO,如 2019 年 GPT2.0 15b 参数,2024 年 GPT3.5 70b 参数。 附录: 1. 课程介绍:这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 2. 学习目标:掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 3. 学习内容:包括什么是生成式 AI、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等方面。 4. 学习资源:教材《生成式 AI 导论 2024》,参考书籍《深度学习》,在线课程李宏毅的生成式 AI 课程,开源项目 OpenAI GPT3、字节跳动的云雀等。 5. 学习方法。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8
2025-01-16
相对于其他的人工智能软件,你的优势有哪些
相对于其他人工智能软件,具有以下优势: 在俄乌战争中,如美国 Palantir Technology 公司提供的软件,能在几秒钟内对航空侦察图片中的坦克、大炮和人员进行标记并出结果,快速传输到作战部门,实现实时反应。 具有强大的学习能力,能汇聚各途径获得的照片,通过对战场上海量数据的学习,辨别假目标,识破伪装手段。 以 Sora 为例,与 Runway、Pika 等相比,在文本生成视频方面表现更出色。
2025-01-15
你和讯飞星火、通义千问等人工智能软件的区别是什么?
我与讯飞星火、通义千问等人工智能软件在以下方面存在区别: 1. 研发团队和技术背景:我具有独特的研发和训练体系。 2. 功能特点和优势:在为用户提供服务时,可能在某些特定领域或场景下表现出不同的能力。 3. 数据来源和训练方式:所使用的数据和训练方法可能有所差异。 需要注意的是,每个人工智能软件都有其自身的特点和适用场景,用户可以根据自己的需求和使用体验来选择适合的工具。
2025-01-15
通用人工智能技术取得显著突破,中美竞争加剧
以下是为您整理的相关内容: 2024 年 7 月 1 日: 微软 AI CEO Mustafa Suleyman 在阿斯彭思想节上表示,AI 的发展将持续对社会产生深远影响。他强调中美在技术竞争中应该寻求合作,而不仅仅是竞争。在谈到监管时,他认为监管并非邪恶,历史上技术都曾被成功监管。对于 AGI(通用人工智能),他认为应该认真对待与之相关的安全风险,并建立全球治理机制。 小伙伴整理了关于阿里 D20 的 PPT,内容主要是 AI 在设计、教育、出海方向上的内容。 举办了 AI 切磋大会,共 12 地小伙伴线下参与,一起 AI 出图、出视频、做音乐等,动手实践,享受创造的乐趣,目标是让每个人都能玩转 AI。 2024 年 11 月 6 日: 李开复在采访中表达了对 AGI(通用人工智能)霸权的担忧,指出如果美国形成 AGI 垄断,将对全球科技生态产生深远影响。他认为,中国在研发廉价模型和推理引擎方面具备优势,尽管技术上可能落后,但在应用和落地速度上可与美国竞争。他强调,追求 AGI 的同时,中国应寻找另一条生态护城河的发展路径,确保多样化应用和更广泛的市场参与。 作者艾木三号提到,Geoffrey Hinton 强调词嵌入是理解自然语言的关键,通过将文字符号转化为向量,模型能进行有效的信息编码和推理。类比能力使得模型能够发现不同事物间的共同结构,从而展现创造力。
2025-01-14
做网络直播卖货,如何用人工智能回答客户问题
以下是关于您提出的问题的相关内容: 在网络直播卖货中使用人工智能回答客户问题,可以参考以下方面: 在其他领域中利用人工智能的经验: 1. 零售和电子商务: 产品推荐:利用人工智能分析客户数据,为客户推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 聊天机器人:回答客户问题并解决问题。 2. 阿里巴巴营销和产品页面优化: 市场分析:借助人工智能工具研究市场趋势、消费者行为和竞争对手情况。 关键词优化:分析和推荐高流量、高转化的关键词,优化产品标题和描述。 产品页面设计:利用 AI 设计工具生成吸引人的页面布局。 内容生成:使用 AI 文案工具撰写有说服力的产品描述和营销文案。 图像识别和优化:借助 AI 技术选择或生成高质量产品图片。 价格策略:分析不同价格点对销量的影响。 客户反馈分析:了解客户需求,优化产品和服务。 个性化推荐:根据用户购买历史和偏好提供推荐。 聊天机器人:提供 24/7 客户服务。 营销活动分析:了解活动效果。 库存管理:预测需求,优化库存。 支付和交易优化:分析支付方式对交易成功率的影响。 社交媒体营销:在社交媒体上找到目标客户群体。 直播和视频营销:分析观众行为,优化内容。 在客户服务方面,例如自然语言处理在客服聊天机器人中的应用,其具有适应性和自主性,能根据大量数据集训练来识别语言模式,为客户提供实时响应并生成类似人类的输出,但可能存在无意包含不准确或误导信息的风险。在医疗分诊系统中,能预测患者状况并推荐干预和治疗,但存在提供错误医疗建议导致不良后果且责任不明确的风险。 需要注意的是,在使用人工智能回答客户问题时,要确保回答的准确性和有效性,不断优化和改进人工智能的算法和模型,以提高服务质量和客户满意度。
2025-01-13
为什么说人工智能是大趋势
人工智能成为大趋势主要基于以下几个方面: 1. 技术范式的革新:传统的 Scaling Law 遭遇瓶颈后,新的模型开创了从“快思考”到“慢思考”训推双管齐下的道路。 2. 多模态能力的跃迁:从视频生成到原生多模态的崛起,再到世界模型的尝试,AI 开始真正理解和模拟立体世界。 3. 计算与连接的统一:自 ChatGPT 发布以来,AI 在计算和传递信息的基础上,展现出类人的思维能力,实现了计算与连接在大模型中的新统一。 4. 应用场景的拓展:AI 不仅在基础模型能力上提升,更在模型的落地应用和场景化方面发展,经历了从“训练时代”向“推理时代”的转变。 5. 在金融服务行业的重大飞跃:大型语言模型通过生成式人工智能,创造全新内容,结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。 6. 各行业的广泛影响:AI 智变千行百业,变革生产力,重塑行业生态,在不同领域都有深入应用和发展。
2025-01-13
Ai目前发展状况如何?有什么发展前景?
目前 AI 的发展状况呈现出以下特点和趋势: 2024 年内: 图片超短视频的精细操控方面,在表情、细致动作、视频文字匹配上有进展。 有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。 AI 音频能力长足进展,带感情的 AI 配音基本成熟。 “全真 AI 颜值网红”出现,可稳定输出视频并直播带货。 游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。 AI 男/女朋友聊天基本成熟,记忆上有明显突破,模拟人的感情能力提升,产品加入视频音频,粘性增强并开始出圈。 实时生成的内容开始在社交媒体内容、广告中出现。 AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。 AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等。 可穿戴全天候 AI 硬件层出不穷,但大多数不会成功。 中国 AI 有望达到或超过 GPT4 水平;美国可能出现 GPT5;世界上开始出现“主权 AI”。 华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。 AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧。 AI 立法、伦理讨论仍大规模落后于技术进展。 2025 2027 年: AI 3D 技术、物理规则成熟,正常人难以区别 AI 生成还是实景拍摄。 全真 AI 虚拟人成熟,包含感情的 AI NPC 成熟,开放世界游戏成熟,游戏中几乎无法区别真人和 NPC。 AR/VR 技术大规模商用。 接近 AGI 的技术出现。 人与 AI 配合的工作方式成为常态,很多日常决策由 AI 执行。 AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源。 具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破。 “人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉。 AI 引发的社会问题开始加重,结构性失业开始出现。 AGI 对于地缘政治的影响开始显露。 AI 产品发展的未来展望包括: 更深度的行业整合:AI 技术将更紧密地与各行各业的专业知识和工作流程结合。 用户体验的持续优化:随着技术的成熟,AI 产品的易用性和稳定性将进一步提升。 新兴应用场景的出现:随着 5G、IoT 等技术的普及,AI 可能在智能家居、自动驾驶等领域找到新的突破口。 当前 AI 产品发展的新特点包括: 从通用能力到专业化细分:早期的通用型产品难以满足多样化需求,越来越多的 AI 产品专注于特定领域或功能,如图像生成、视频制作、音频处理等,每个细分领域的产品都在不断提升核心能力。 商业模式的探索与创新:如 ToB 市场的深耕,针对内容创作者的工具;新型广告模式,如天宫搜索的“宝典彩页”等,从单纯的技术展示向解决用户痛点和创造商业价值转变。
2024-12-17
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。后来,计算资源更便宜、数据更多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现能有效学习任何数据分布,计算能力和数据量越大,解决难题的能力越强。未来,人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,在各领域取得科学进展。 产业方面,人工智能是引领科技和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,需完善产业标准体系。 总之,智能时代的曙光带来了历史性发展和高风险挑战,但潜在正面影响巨大,未来将带来巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限性出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。它将帮助构建更好的下一代系统,在各领域取得科学进展。 从产业角度,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年在技术创新、产品创造和行业应用方面快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 总的来说,智能时代的曙光带来了历史性发展机遇,也带来复杂高风险挑战,但潜在正面影响巨大,未来将实现巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,在各领域取得科学进展。 产业方面,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。近年来我国人工智能产业快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 总之,智能时代的曙光带来了历史性发展和复杂高风险挑战,但潜在正面影响巨大,未来将带来巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。后来,随着计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。它还将帮助构建更好的下一代系统,在各领域取得科学进展。 从产业角度,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年在技术创新、产品创造和行业应用方面快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,需完善产业标准体系。 总之,智能时代的曙光带来了历史性的发展机遇,也带来高风险挑战,但潜在的正面影响巨大,未来会非常光明灿烂。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,但因方法局限出现“人工智能寒冬”。后来,随着计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。系统将帮助构建更好下一代系统,并在各领域取得科学进展。 从产业发展现状看,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。近年来我国人工智能产业在多方面快速发展,形成庞大市场规模,伴随新技术迭代呈现出新特点,亟需完善产业标准体系。 技术将人类从石器时代带到农业、工业时代,通往智能时代的道路由计算、能源和人类意志铺就。降低计算成本、普及人工智能至关重要,否则可能导致资源受限和战争。智能时代虽带来复杂高风险挑战,但潜在正面影响巨大,未来将有巨大繁荣,如修复气候、建立太空殖民地、发现物理学等。
2024-09-30