人工智能的发展前景十分广阔。
从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限性出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。
在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。它将帮助构建更好的下一代系统,在各领域取得科学进展。
从产业角度,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年在技术创新、产品创造和行业应用方面快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。
总的来说,智能时代的曙光带来了历史性发展机遇,也带来复杂高风险挑战,但潜在正面影响巨大,未来将实现巨大繁荣。
[title]人工智能简介和历史[heading1]人工智能简史人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时:
[title]文章:Sam Altman|智能时代[heading2]译文简单概括:深度学习有效,随规模扩大预期改善,我们持续增加相关资源投入。就是这样;人类发现了一种算法,可以真正地学习任何数据分布(或者说,产生任何数据分布的潜在"规则")。令人震惊的是,计算能力和数据量越大,它帮助人们解决难题的能力就越强。不管我花多长时间思考这个问题,我都无法完全理解它的重要性。我们还有很多细节需要解决,但被任何特定挑战分散注意力是一个错误。深度学习是有效的,我们将解决剩余的问题。我们可以谈论很多关于下一步可能发生的事情,但主要的是,人工智能将随着规模而变得更好,这将导致对全球人民生活产生有意义的改善。人工智能模型将很快作为自主的个人助理,代表您执行特定任务,如帮助您协调医疗护理。未来,人工智能系统将变得如此出色,它们将帮助我们构建更好的下一代系统,并在各个领域取得科学进展。技术将我们从石器时代带到农业时代,再到工业时代。从这里开始,通往智能时代的道路由计算、能源和人类意志铺就。如果我们想让尽可能多的人接触到人工智能,我们需要降低计算成本,使其更加普及(这需要大量的能源和芯片)。如果我们不能建立足够的基础设施,人工智能将成为一种非常有限的资源,会导致战争,并主要成为富人的工具。我们需要聪明而坚定地采取行动。智能时代的曙光是一个历史性的发展,同时也带来极其复杂且高风险的挑战。这并非完全是个积极的故事,但潜在的正面影响如此巨大,我们有责任找出如何应对眼前的风险。我相信未来会非常光明灿烂,以至于现在任何人都无法对之进行公正的描述;智能时代的一个决定性特征将是巨大的繁荣。尽管这将逐步发生,但令人惊叹的胜利——修复气候、建立太空殖民地以及发现物理学的所有内容——最终将成为寻常。拥有近乎无限的智慧和丰富的能源——产生伟大创意和实现它们的能力——我们可以做很多事情。
人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速和实体经济深度融合,深刻改变工业生产模式和经济发展形态,将对赋能新型工业化、加快建设制造强国、网络强国和数字中国发挥重要的支撑作用。人工智能产业链包括基础层、框架层、模型层、应用层等4个部分,其中,基础层主要包括算力、算法和数据,框架层主要是指用于模型开发的深度学习框架和工具,模型层主要是指大模型等技术和产品,应用层主要是指人工智能技术在行业场景的应用。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面实现快速发展,形成庞大市场规模。伴随以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善人工智能产业标准体系。