直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型的幻觉

回答

大模型的幻觉是指模型倾向于生成看似令人信服但是无根据或虚假的回应。这一现象提出了关于模型输出可靠性和可信度的关键问题,需要采取全面的方法来评估和解决这一问题。已有大量研究致力于从各个角度剖析幻觉问题。这包括旨在评估不同模型和场景中幻觉的程度和性质的努力。这些评估提供了宝贵的见解,说明了幻觉如何以及为什么发生,为制定减少其发生的策略奠定了基础。同时,大量研究集中于设计和实施方法以减少这些大型模型中的幻觉。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
ai幻觉
AI 幻觉是指 AI 系统生成的信息与事实不符或与预期不符,就像在“一本正经地胡说八道”。这并非 AI 故意为之,而是由技术局限性造成的错误。 AI 幻觉的定义为:AI 系统生成的输出内容看似合理流畅,但实际上与输入信息、上下文环境或客观事实相矛盾,缺乏逻辑或经验支撑。其表现形式多种多样,比如生成不存在的人物、地点、事件,或者对已知事实进行错误的描述。 AI 幻觉产生的原因与训练数据的质量、模型的结构和训练策略有关。如果训练数据存在偏差或错误,模型就会学习到这些偏差和错误,并将其体现在生成的内容中。 AI 幻觉存在诸多风险,可能会误导用户,导致用户获取错误信息从而做出错误判断,例如医疗 AI 助手给出错误诊断建议,可能延误患者治疗;可能被用于制造和传播虚假信息,误导公众,影响社会稳定,比如生成虚假新闻报道或社交媒体帖子用于政治宣传或商业炒作;还会损害 AI 系统的可信度,降低用户对 AI 系统的信任度,阻碍 AI 技术推广和应用,比如用户发现 AI 经常“胡说八道”,可能不再信任其判断甚至拒绝使用相关产品。 为了避免 AI 幻觉,您可以参考,但需要注意的是,AI 幻觉不可能完全消除。另外,AI 不会解释自己,当您要求它解释为何生成某些内容时,它给出的答案可能是完全编造的。在使用 AI 时,您需要对其输出负责,并检查所有内容。
2024-10-09
AI幻觉问题,如何解决
以下是关于解决 AI 幻觉问题的一些方法: 1. 借鉴人类应对认知偏差的方法:为解决 AI 幻觉问题提供思路,开发相应技术手段,帮助 AI 更好地理解世界,做出更准确的判断。例如对 AI 模型的训练数据进行“大扫除”,去除错误、补充缺失、平衡偏差,让其学习到更真实全面的知识。 2. 打开 AI 的“黑箱”:让 AI 的“思考过程”更透明,便于人类理解和监督。可解释性 AI 技术能帮助理解 AI 模型如何做出判断,避免因错误逻辑或数据导致错误结论。 3. 打造 AI “智囊团”:让多个 AI 模型协同工作,共同解决问题,避免单个模型的局限性导致的错误。 4. 运用提示词工程:在询问代码功能时,要求 AI 逐行解释代码的含义。明确限制 AI 的生成范围,例如在询问名人名言时指定名人姓名和相关主题,在询问新闻事件时指定事件的时间范围和相关关键词。将提示词变得清晰、具体、有针对性,引导 AI 生成更准确可靠的内容。 5. 进行数据“体检”:为 AI 模型提供“干净”“健康”的训练数据,是预防 AI 幻觉的根本措施。包括数据清洗,去除错误信息、补充缺失数据、修正不一致内容,并消除数据中的偏见;数据增强,为模型提供更多更丰富的训练数据,提高模型的泛化能力。
2024-09-02
解释一下大语言模型的幻觉
大型语言模型有时会产生所谓的“幻觉”。幻觉是指模型在生成文本时产生不准确、误导性或不相关信息的倾向。这种现象通常发生在模型试图填补其知识或理解上的空白时,尤其是在处理复杂、模糊或具有多义性的输入时。 幻觉的原因包括: 过度泛化:模型可能会过度泛化从训练数据中学到的模式,导致在新的或不常见的情境中产生不准确的信息。 缺乏更新信息:由于大型语言模型通常是基于截至特定时间点的数据集进行训练的,它们可能不具备最新的信息或事件更新。 错误的信息源:在训练过程中,模型可能会吸收不准确或误导性的信息,这些信息可能来源于训练数据中的错误或不准确的数据源。 对模糊或歧义输入的误解:当输入信息含糊不清或具有多种解释时,模型可能会生成与原始意图不符的响应。 为了连贯性牺牲准确性:在尝试生成流畅、连贯的文本时,模型有时可能会牺牲信息的准确性。 为了避免幻觉,用户在使用大型语言模型时应该保持警惕,特别是在处理关键决策或需要高度准确性的情境中。验证模型提供的信息,并从多个可靠来源进行交叉检查是非常重要的。此外,随着技术的进步,模型的设计和训练方法也在不断改进,以减少幻觉现象的发生。
2024-04-17
chilloutmix模型
以下是关于 chilloutmix 模型的相关信息: 在腊八节相关的生成中,模型为 chilloutmix_NiPrunedFp32Fix,生成尺寸与草稿图保持一致,有正、负面关键词及 ControlNet 设置等具体参数。 在猫猫相关的生成中,虽然作者建议使用 chilloutmix_NiPrunedFp32Fix 模型,但也可以尝试其他模型。 在 AIGC Weekly 09 中,提到从 civitai 下载 ChilloutMix 模型并放到整合包 models\\Stablediffusion 目录里启动 web UI 切换模型。
2024-11-17
SD好的模型分享
以下是为您分享的关于 SD 模型的相关内容: 对于 SDXL 的 ControlNet 模型中的 Canny 硬边缘模型,有不同型号,如 4080ti 笔记本测试中,12G 显存下,sdxl base+refiner 模型,使用 diffusers 的 2.5Gfull 模型绘制 10241024 尺寸图片需 2 分 57 秒,320Mb 的 small 模型用时 34s,质量差距不大但时间优势明显。其他作者如 kohya 的用时 33 秒,更接近真实质感。sai 的 128lora 和 256lora 分别用时 39 秒和 1 分 08 秒,偏绘画感觉。t2i 的用时 34s,偏插画。关闭 refiner 能节省一半左右时间,平均 17 秒左右。 在 Depth 深度模型测试中,图形尺寸 6641024,diffusers 的 full 模型用时 2 分 48 秒,small 模型用时 23s,kohya 模型用时 42 秒,sai 模型用时 1 分 12 秒,sargezt 模型用时 1 分 52 秒。 用 Stable Diffusion 时,要先确定照片风格,如生成真人 AI 小姐姐可选用 chilloutmix 的大模型。部分常用大模型可在分享的链接中根据文件夹名称找到。文章第三部分会详细介绍模型下载位置和存放位置。 对于 ControlNet 中线条约束类的预处理器和模型,作者已整理好,如需获取可添加公众号【白马与少年】回复【SD】。同时作者还附上一张图帮助理解 ControlNet 模型的命名规则。
2024-11-17
sd模型
Stable Diffusion(SD)模型是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将一段文本输入到 SD 模型中,经过一定迭代次数生成符合文本描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩的图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示将输入图片重绘以更符合文本描述。比如在之前生成的沙滩图片上添加“海盗船”。 输入的文本信息需通过“桥梁”CLIP Text Encoder 模型转换为机器数学信息。该模型作为 SD 模型中的前置模块,将输入文本信息编码,生成 Text Embeddings 特征矩阵,用于控制图像生成。 CLIP 模型包含 Text Encoder 和 Image Encoder 两个模型,在 Stable Diffusion 中主要使用 Text Encoder 模型。它将输入的文本 Prompt 编码转换成 Text Embeddings(文本的语义信息),通过 UNet 网络中的 CrossAttention 模块嵌入 Stable Diffusion 中作为 Condition,对生成图像的内容进行控制与引导。目前 SD 模型使用的是中的 Text Encoder 模型。 CLIP ViTL/14 中的 Text Encoder 是只包含 Transformer 结构的模型,由 12 个 CLIPEncoderLayer 模块组成,模型参数大小是 123M,输出的 Text Embeddings 维度为 77x768。 以下是相关资源获取方式: SD 模型权重百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得包含多种模型权重的资源链接。 SD 保姆级训练资源百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得包含数据处理、模型微调训练及基于 SD 的 LoRA 模型训练代码等全套资源。 Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2024-11-17
我是一名高中历史老师,请问用什么大模型能帮我做教学设计
以下为您推荐一些利用大模型辅助高中历史教学设计的案例: 有一位历史老师使用 GPT 给学生讲课,通过 GPT 生成一个“沉浸式”历史片段游戏,让学生扮演一个角色“设身处地”地做决策,学生的作业是找出 GPT 的错误。例如明朝灭亡、南京、1645 年 5 月的相关案例,您可以参考:https://chat.openai.com/share/86815f4e674c4410893c4ae3f1b7412e/continue 。 对于历史专业的学生,当他们遇到像 ChatGPT 这样的语言模型时,已经训练有素能够识别一些常见的陷阱,如事实不准确等,并通过事实核查、分析体裁和受众、在相关来源中搜索等技能来解决这些问题。 语言模型对于历史学家和历史专业的学生是有益的,但对于历史老师和其他教育工作者在短期内可能会带来一些问题,需要重新思考许多作业的布置方式。 您可以尝试借鉴这些案例,根据您的教学需求和学生特点,对大模型的应用进行调整和优化。
2024-11-17
大模型可以修复老旧的分辨率低的视频吗
大模型在修复老旧低分辨率视频方面是可行的,但具体效果因模型和方法而异。 例如,使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型、StableSR 模块和 VQVAE 等,通过不同的放大方法进行测试。如“Ultimate SD upscale”脚本放大,重绘幅度不同效果有别,重绘幅度大可能导致人物失真。“后期处理”的放大方法能使眼神更锐利,但对模糊的头发改善有限。而 StableSR 的放大则需要进行相应的模型和参数调整。 另外,像 Sora 这样的大型视觉模型,能够在原始尺寸上训练、理解和生成视频及图像。它可以处理不同格式和分辨率的视觉数据,保持原始宽高比,改善生成视频的构图和框架。其基础模型用于低分辨率视频生成,通过级联扩散模型细化提高分辨率,采用 3D UNet 架构,结合多种技术和方法,能生成高保真度且具有可控性的视频。
2024-11-17
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16