Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

sd模型

Answer

Stable Diffusion(SD)模型是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。

文生图任务是将一段文本输入到 SD 模型中,经过一定迭代次数生成符合文本描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩的图片。

图生图任务在输入文本基础上再输入一张图片,模型根据文本提示将输入图片重绘以更符合文本描述。比如在之前生成的沙滩图片上添加“海盗船”。

输入的文本信息需通过“桥梁”CLIP Text Encoder 模型转换为机器数学信息。该模型作为 SD 模型中的前置模块,将输入文本信息编码,生成 Text Embeddings 特征矩阵,用于控制图像生成。

CLIP 模型包含 Text Encoder 和 Image Encoder 两个模型,在 Stable Diffusion 中主要使用 Text Encoder 模型。它将输入的文本 Prompt 编码转换成 Text Embeddings(文本的语义信息),通过 U-Net 网络中的 CrossAttention 模块嵌入 Stable Diffusion 中作为 Condition,对生成图像的内容进行控制与引导。目前 SD 模型使用的是[CLIP ViT-L/14]中的 Text Encoder 模型。

CLIP ViT-L/14 中的 Text Encoder 是只包含 Transformer 结构的模型,由 12 个 CLIPEncoderLayer 模块组成,模型参数大小是 123M,输出的 Text Embeddings 维度为 77x768。

以下是相关资源获取方式:

  • SD 模型权重百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得包含多种模型权重的资源链接。
  • SD 保姆级训练资源百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SD-Train,即可获得包含数据处理、模型微调训练及基于 SD 的 LoRA 模型训练代码等全套资源。
  • Stable Diffusion 中 VAE,U-Net 和 CLIP 三大模型的可视化网络结构图下载:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
Content generated by AI large model, please carefully verify (powered by aily)

References

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

Stable Diffusion(SD)模型是由Stability AI和LAION等公司共同开发的生成式模型,总共有1B左右的参数量,可以用于文生图,图生图,图像inpainting,ControlNet控制生成,图像超分等丰富的任务,本节中我们以文生图(txt2img)和图生图(img2img)任务展开对Stable Diffusion模型的工作流程进行通俗的讲解。文生图任务是指将一段文本输入到SD模型中,经过一定的迭代次数,SD模型输出一张符合输入文本描述的图片。比如下图中输入了“天堂,巨大的,海滩”,于是SD模型生成了一个美丽沙滩的图片。SD模型的文生图(txt2img)过程而图生图任务在输入本文的基础上,再输入一张图片,SD模型将根据文本的提示,将输入图片进行重绘以更加符合文本的描述。比如下图中,SD模型将“海盗船”添加在之前生成的那个美丽的沙滩图片上。SD模型的图生图(img2img)过程那么输入的文本信息如何成为SD模型能够理解的机器数学信息呢?很简单,我们需要给SD模型一个文本信息与机器数据信息之间互相转换的“桥梁”——CLIP Text Encoder模型。如下图所示,我们使用CLIP Text Encoder模型作为SD模型中的前置模块,将输入的文本信息进行编码,生成与文本信息对应的Text Embeddings特征矩阵,再将Text Embeddings用于SD模型中来控制图像的生成:蓝色框就是CLIP Text Encoder模型,能够将输入文本信息进行编码,输出SD能够理解的特征矩阵

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

上面我们讲到CLIP模型主要包含Text Encoder和Image Encoder两个模型,在Stable Diffusion中主要使用了Text Encoder模型。CLIP Text Encoder模型将输入的文本Prompt进行编码,转换成Text Embeddings(文本的语义信息),通过前面一章节提到的U-Net网络中的CrossAttention模块嵌入Stable Diffusion中作为Condition,对生成图像的内容进行一定程度上的控制与引导,目前SD模型使用的的是[CLIP ViT-L/14](https://link.zhihu.com/?target=https%3A//huggingface.co/openai/clip-vit-large-patch14)中的Text Encoder模型。CLIP ViT-L/14中的Text Encoder是只包含Transformer结构的模型,一共由12个CLIPEncoderLayer模块组成,模型参数大小是123M,具体CLIP Text Encoder模型结构如下图所示。其中特征维度为768,token数量是77,所以输出的Text Embeddings的维度为77x768。下图是Rocky梳理的Stable Diffusion CLIP Encoder的完整结构图,大家可以感受一下其魅力,看着这个完整结构图学习Stable Diffusion CLIP Encoder部分,相信大家脑海中的思路也会更加清晰:下面Rocky将使用transofmers库演示调用CLIP Text Encoder,给大家一个更加直观的SD模型的文本编码全过程:

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

SD模型权重百度云网盘:关注Rocky的公众号WeThinkIn,后台回复:SD模型,即可获得资源链接,包含Stable Diffusion 1.4模型权重、Stable Diffusion 1.5模型权重、Stable Diffusion I npainting模型权重、Stable Diffusion 2 base(512x512)模型权重、Stable Diffusion 2(768x768)模型权重、Stable Diffusion 2 Inpainting模型权重、Stable Diffusion 2.1 base(512x512)模型权重、Stable Diffusion 2.1(768x768)模型权重、Stable Diffusion Turbo模型权重、S table Diffusion x4 Upscaler(超分)模型权重以及consistency-decoder模型权重。不同格式的模型权重比如safetensors格式、ckpt格式、diffusers格式、FP16精度格式、ONNX格式、flax/jax格式以及openvino格式等均已包含。SD保姆级训练资源百度云网盘:关注Rocky的公众号WeThinkIn,后台回复:SD-Train,即可获得资源链接,包含数据处理、SD模型微调训练以及基于SD的LoRA模型训练代码全套资源,帮助大家从0到1快速上手训练属于自己的SD AI绘画模型。更多SD训练资源使用教程,请看本文第六章内容。Stable Diffusion中VAE,U-Net和CLIP三大模型的可视化网络结构图下载:关注Rocky的公众号WeThinkIn,后台回复:SD网络结构,即可获得网络结构图资源链接。

Others are asking
你有内置sd吗
Stable Diffusion(SD)相关知识如下: SD 内置了 LyCORIS,使用 LoRA 模型较多,其与 LyCORIS 相比可调节范围更大。LoRA 和 LyCORIS 的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间。管理模型时可进入 WebUl 目录下的 models/LoRA 目录,在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 SD 的安装:系统需为 Win10 或 Win11。Win 系统查看配置,包括查看电脑系统(在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格)和查看电脑配置(需要满足电脑运行内存 8GB 以上、是英伟达(NVIDA)的显卡、显卡内存 4GB 以上。打开任务管理器:同时按下 ctrl + shift + esc,查看电脑运行内存和显卡内存)。配置达标可跳转至对应安装教程页,如 【SD】无需 Lora,一键换脸插件 Roop:勾选相关项目,确保包含 Python 和 C++包。更改安装位置,点击右下角安装。安装时间长需耐心等待。安装好后,打开 SD 文件目录下的相关文件夹,在地址栏输入“cmd”回车,在打开的 dos 界面粘贴“python m pip install insightface==0.7.3 user”安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),后台回复【SD】下载。安装完成后,重新打开启动器,后台会继续下载模型,需全程科学上网。Roop 插件主要适用于真实人脸替换,对二次元人物作用不大。选用真实系模型,设置相关参数后生成,若人脸像素偏低模糊,可发送到“图生图”进行重绘。
2025-03-06
sd的关键词可以用中文吗
在 Stable Diffusion 中,通常只能识别英语关键词。但不用担心,您可以直接使用翻译工具将中文关键词翻译成英语后输入。比如,若您想生成一个漂亮的小姐姐站在大街上,可以写成“1 girl, beautiful, standing, street”这样的形式。输入关键词时,常用一个个单词并用英文状态下的逗号隔开。不过,对于中文字体的处理,也有一些方法,如将中文字做成白底黑字存成图片样式,再使用文生图的方式等。在输入关键词时,还可以先写一些提升照片质量的词语,使生成的照片更加精致。
2025-03-06
中文可以用sd吗
中文可以使用 Stable Diffusion(SD)。以下是使用 SD 制作中文文字的一些方法和步骤: 1. 将中文字做成白底黑字,存成图片样式。 2. 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 3. 输入关键词,如奶油的英文单词“Cream+Cake”(加强质感),反关键词:“Easynegative”(负能量),反复刷机,得到满意的效果即可。 4. 同理可输出 C4D 模型,可自由贴图材质效果,如“3d,blender,oc rendering”。 5. 如果希望有景深效果,也可以打开“depth”(增加阴影和质感)。 6. 打开高清修复,分辨率联系 1024 以上,步数:29 60。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7),源代码库:github.com/StabilityAI/stablediffusion 。
2025-03-06
b站的秋葉aaaki大佬对sd做过什么
B 站的秋葉 aaaki 大佬在 SD 方面的相关贡献包括: 1. 提供了 SD 的开源整合包和 LoRA 模型训练一键包。最新一次更新整合包版本为 v4.5,于 11 月更新。此整合包支持 SDXL,预装多种必须模型,无需安装 python、cuda、git,解压即用。获取方式为一键三连+关注私信发送“整合包”。 2. 其相关内容有助于用户了解 SD 的工作原理和基本功能,对于还未接触过 AI 绘画的朋友有启蒙作用。很多人在安装 SD 软件时会参考他的视频。 您可以通过以下链接获取更多相关资源: 整合包百度盘:https://pan.baidu.com/s/1MjO3CpsIvTQIDXplhE0OA?pwd=aaki LoRA 模型训练一键包百度盘:https://pan.baidu.com/s/1TBaoLkdJVjk_gPpqbUzZFw ,提取码:p8uy
2025-03-06
sd是哪位大佬做的
SD 是 Stable Diffusion 的简称。它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,于 2022 年发布的深度学习文本到图像生成模型,主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。我们可以通过一系列的工具搭建准备,使用 SD 进行想要的图片 AIGC 。 此外,还有与 SD 相关的 Fooocus,它使用的是最新推出的 SDXL 1.0 模型,对 stable diffusion 和 Midjourney 做了结合升级。保留了 SD 的开源属性,可以部署到本地免费使用,在操作界面吸取了 Midjourney 简洁的特点,省去了 WebUI 中复杂的参数调节,让用户可以专注于提示和图像。配置要求为本地部署,需要不低于 8GB 的内存和 4GB 的英伟达显卡。Fooocus 介绍/安装包下载:https://github.com/lllyasviel/Fooocus 。 另外,在 Video Battle 视频挑战中,有一种方法是使用 SD 的分支版本 CONTROLNET 大佬开发的 Forge,特点是支持图生视频、图生 SD,而且对低端显卡支持良好。下载链接为:https://github.com/lllyasviel/stablediffusionwebuiforge/releases/download/latest/webui_forge_cu121_torch21.7z ,解压后,优先运行 update.bat 进行升级,然后再运行 run.bat ,接着就打开了和 SD 基本一模一样的界面。核心区别在于 FORGE 增加了 2 个王炸功能,SVD【图生视频】和 Z123【图生 3D】。
2025-03-06
sd可以用中文输入吗
SD3stable diffusion3 已开源,艺术实现更自由。Qwen2 接上 SD3 Medium 支持中文输入,会自动优化并输出英文提示词。相关资源如下: 下载地址(huggingface 比较慢,多放几个百度云盘): 工作流:https://github.com/ZHOZHOZHO/ComfyUIWorkflowsZHO Qwen2 插件:https://github.com/ZHOZHOZHO/ComfyUIQwen2 SD3 dreambooth 脚本:https://github.com/huggingface/diffusers/blob/sd3/examples/dreambooth/README_sd3.md 、https://github.com/bghira/SimpleTuner/tree/feature/sd3 另外,关于 SD 做中文文字有持续更新的教程: 制作思路可参考 Nenly 同学的视频教程:【“牛逼”的教程来了!一次学会 AI 二维码+艺术字+光影光效+创意 Logo 生成,绝对是 B 站最详细的 Stable Diffusion 特效设计流程教学!AI 绘画进阶应用哔哩哔哩】https://b23.tv/c33gTIQ 群友自制的详细视频教程步骤: 1. 将中文字做成白底黑字,存成图片样式。 2. 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 3. 输入关键词,如奶油的英文单词,Cream+Cake(加强质感),反关键词:Easynegative(负能量),反复刷机,得到满意的效果即可。 4. 同理可输出 C4D 模型,可自由贴图材质效果,3d,blender,oc rendering。 5. 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 6. 打开高清修复,分辨率联系 1024 以上,步数:2960。 当然 https://firefly.adobe.com/也可以,但 SD 感觉可操控性更强,尤其是中文字体。
2025-03-06
Manus的基础大模型是什么?
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人(如 ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。 Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI 的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。 Manus AI 的技术架构还包括以下几个关键组件: 1. 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 2. 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:Manus AI 通过内置多个智能体,实现了任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。Manus AI 的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。
2025-03-06
最新AI大模型
以下是关于最新 AI 大模型的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习是利用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习是在学习的数据没有标签的情况下,算法自主发现规律,经典任务如聚类。 强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因层数多而称为深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-06
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
你用的大模型是?
我所使用的大模型相关信息未明确告知。但为您介绍一下大模型的相关知识: 大模型指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行“文本生成”“推理问答”“对话”“文档摘要”等工作。 大模型的训练和使用过程可以类比为“上学参加工作”: 1. 找学校:训练 LLM 需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。比如:The cat sat on the mat,会被分割成“The”“cat”“sat”等的同时,会生成相应的词汇表。
2025-03-06
yolov 和resnet咋做成大模型?
要将 YOLOv 和 ResNet 做成大模型,需要考虑以下几个方面: 1. 数据准备:收集大量的相关数据,并进行清洗、预处理和标注,以满足模型训练的需求。 2. 模型架构调整:根据具体任务和数据特点,对 YOLOv 和 ResNet 的架构进行适当的修改和优化,例如增加层数、调整通道数等。 3. 训练策略:选择合适的优化算法、学习率调整策略等,以提高训练效果和收敛速度。 4. 计算资源:大模型的训练需要强大的计算资源,包括硬件设施和云计算平台等。 此外,从相关的研究和趋势来看,大模型架构呈现出日益明显的混合趋势,多种有代表性的技术路径在不同程度保留 Transformer 架构优势的基础上,结合 RNN、CNN 等思想做出创新发展。例如类循环神经网络模型(以 RWKV 为代表)、状态空间模型(以 Mamba 为代表)、层次化卷积模型(以 UniRepLKNet 为代表)、多尺度保持机制模型(以 RetNet 为代表)、液体神经网络模型(以 LFM 为代表)等。但需要注意的是,将 YOLOv 和 ResNet 做成大模型是一个复杂的过程,需要深入的研究和实践。
2025-03-06
大模型调优
大模型调优的方法主要包括以下几个方面: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对特定场景,后者性能可能提升一倍左右。 2. 更换 embedding 模型:将默认的 embedding 模型如 LangChain Chatchat 的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果最优。 4. 对文档名称进行处理:人工对文件重命名,上传相同文件构建知识库,同时在构建时勾选【开启中文标题加强】选项,重命名文件对结果提升不明显,但勾选该选项后回答的无关信息减少,效果有所提升。 从产品视角考虑大模型调优,主要从以下两个维度分析问题: 1. Context optimization(上下文优化):所创建的 LLM 应用若需要特定数据、系统和流程等预训练 LLM 中缺失的知识和信息,需进行上下文优化,如企业内部智能问答机器人,应将相关知识提供给大模型,RAG 是解决该问题的技术。 2. LLM optimization(大模型优化):在进行足够的 prompt 工程后,若 LLM 应用在垂直领域表现仍不足或希望输出特定格式风格等稳定性不及预期,可考虑微调,且需与良好的 prompt 工程结合。 大模型的安全保障可通过对齐,也叫指令调优实现,包括监督微调、获取 reward model 与进行强化学习调整输出分布。但即使如 GPT4 和 Claude 等模型已几乎不回复危险问题,Alignment 仍不足以防护所有安全问题,存在越狱现象。LLAMA2 专门使用安全有监督微调确保语言模型安全。强化学习能让模型根据人类反馈调整分布,面对训练分布外数据也可能学会拒绝不当回答。
2025-03-06