直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

sd模型

回答

Stable Diffusion(SD)模型是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。

文生图任务是将一段文本输入到 SD 模型中,经过一定迭代次数生成符合文本描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩的图片。

图生图任务在输入文本基础上再输入一张图片,模型根据文本提示将输入图片重绘以更符合文本描述。比如在之前生成的沙滩图片上添加“海盗船”。

输入的文本信息需通过“桥梁”CLIP Text Encoder 模型转换为机器数学信息。该模型作为 SD 模型中的前置模块,将输入文本信息编码,生成 Text Embeddings 特征矩阵,用于控制图像生成。

CLIP 模型包含 Text Encoder 和 Image Encoder 两个模型,在 Stable Diffusion 中主要使用 Text Encoder 模型。它将输入的文本 Prompt 编码转换成 Text Embeddings(文本的语义信息),通过 U-Net 网络中的 CrossAttention 模块嵌入 Stable Diffusion 中作为 Condition,对生成图像的内容进行控制与引导。目前 SD 模型使用的是[CLIP ViT-L/14]中的 Text Encoder 模型。

CLIP ViT-L/14 中的 Text Encoder 是只包含 Transformer 结构的模型,由 12 个 CLIPEncoderLayer 模块组成,模型参数大小是 123M,输出的 Text Embeddings 维度为 77x768。

以下是相关资源获取方式:

  • SD 模型权重百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得包含多种模型权重的资源链接。
  • SD 保姆级训练资源百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SD-Train,即可获得包含数据处理、模型微调训练及基于 SD 的 LoRA 模型训练代码等全套资源。
  • Stable Diffusion 中 VAE,U-Net 和 CLIP 三大模型的可视化网络结构图下载:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

Stable Diffusion(SD)模型是由Stability AI和LAION等公司共同开发的生成式模型,总共有1B左右的参数量,可以用于文生图,图生图,图像inpainting,ControlNet控制生成,图像超分等丰富的任务,本节中我们以文生图(txt2img)和图生图(img2img)任务展开对Stable Diffusion模型的工作流程进行通俗的讲解。文生图任务是指将一段文本输入到SD模型中,经过一定的迭代次数,SD模型输出一张符合输入文本描述的图片。比如下图中输入了“天堂,巨大的,海滩”,于是SD模型生成了一个美丽沙滩的图片。SD模型的文生图(txt2img)过程而图生图任务在输入本文的基础上,再输入一张图片,SD模型将根据文本的提示,将输入图片进行重绘以更加符合文本的描述。比如下图中,SD模型将“海盗船”添加在之前生成的那个美丽的沙滩图片上。SD模型的图生图(img2img)过程那么输入的文本信息如何成为SD模型能够理解的机器数学信息呢?很简单,我们需要给SD模型一个文本信息与机器数据信息之间互相转换的“桥梁”——CLIP Text Encoder模型。如下图所示,我们使用CLIP Text Encoder模型作为SD模型中的前置模块,将输入的文本信息进行编码,生成与文本信息对应的Text Embeddings特征矩阵,再将Text Embeddings用于SD模型中来控制图像的生成:蓝色框就是CLIP Text Encoder模型,能够将输入文本信息进行编码,输出SD能够理解的特征矩阵

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

上面我们讲到CLIP模型主要包含Text Encoder和Image Encoder两个模型,在Stable Diffusion中主要使用了Text Encoder模型。CLIP Text Encoder模型将输入的文本Prompt进行编码,转换成Text Embeddings(文本的语义信息),通过前面一章节提到的U-Net网络中的CrossAttention模块嵌入Stable Diffusion中作为Condition,对生成图像的内容进行一定程度上的控制与引导,目前SD模型使用的的是[CLIP ViT-L/14](https://link.zhihu.com/?target=https%3A//huggingface.co/openai/clip-vit-large-patch14)中的Text Encoder模型。CLIP ViT-L/14中的Text Encoder是只包含Transformer结构的模型,一共由12个CLIPEncoderLayer模块组成,模型参数大小是123M,具体CLIP Text Encoder模型结构如下图所示。其中特征维度为768,token数量是77,所以输出的Text Embeddings的维度为77x768。下图是Rocky梳理的Stable Diffusion CLIP Encoder的完整结构图,大家可以感受一下其魅力,看着这个完整结构图学习Stable Diffusion CLIP Encoder部分,相信大家脑海中的思路也会更加清晰:下面Rocky将使用transofmers库演示调用CLIP Text Encoder,给大家一个更加直观的SD模型的文本编码全过程:

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

SD模型权重百度云网盘:关注Rocky的公众号WeThinkIn,后台回复:SD模型,即可获得资源链接,包含Stable Diffusion 1.4模型权重、Stable Diffusion 1.5模型权重、Stable Diffusion I npainting模型权重、Stable Diffusion 2 base(512x512)模型权重、Stable Diffusion 2(768x768)模型权重、Stable Diffusion 2 Inpainting模型权重、Stable Diffusion 2.1 base(512x512)模型权重、Stable Diffusion 2.1(768x768)模型权重、Stable Diffusion Turbo模型权重、S table Diffusion x4 Upscaler(超分)模型权重以及consistency-decoder模型权重。不同格式的模型权重比如safetensors格式、ckpt格式、diffusers格式、FP16精度格式、ONNX格式、flax/jax格式以及openvino格式等均已包含。SD保姆级训练资源百度云网盘:关注Rocky的公众号WeThinkIn,后台回复:SD-Train,即可获得资源链接,包含数据处理、SD模型微调训练以及基于SD的LoRA模型训练代码全套资源,帮助大家从0到1快速上手训练属于自己的SD AI绘画模型。更多SD训练资源使用教程,请看本文第六章内容。Stable Diffusion中VAE,U-Net和CLIP三大模型的可视化网络结构图下载:关注Rocky的公众号WeThinkIn,后台回复:SD网络结构,即可获得网络结构图资源链接。

其他人在问
SD好的模型分享
以下是为您分享的关于 SD 模型的相关内容: 对于 SDXL 的 ControlNet 模型中的 Canny 硬边缘模型,有不同型号,如 4080ti 笔记本测试中,12G 显存下,sdxl base+refiner 模型,使用 diffusers 的 2.5Gfull 模型绘制 10241024 尺寸图片需 2 分 57 秒,320Mb 的 small 模型用时 34s,质量差距不大但时间优势明显。其他作者如 kohya 的用时 33 秒,更接近真实质感。sai 的 128lora 和 256lora 分别用时 39 秒和 1 分 08 秒,偏绘画感觉。t2i 的用时 34s,偏插画。关闭 refiner 能节省一半左右时间,平均 17 秒左右。 在 Depth 深度模型测试中,图形尺寸 6641024,diffusers 的 full 模型用时 2 分 48 秒,small 模型用时 23s,kohya 模型用时 42 秒,sai 模型用时 1 分 12 秒,sargezt 模型用时 1 分 52 秒。 用 Stable Diffusion 时,要先确定照片风格,如生成真人 AI 小姐姐可选用 chilloutmix 的大模型。部分常用大模型可在分享的链接中根据文件夹名称找到。文章第三部分会详细介绍模型下载位置和存放位置。 对于 ControlNet 中线条约束类的预处理器和模型,作者已整理好,如需获取可添加公众号【白马与少年】回复【SD】。同时作者还附上一张图帮助理解 ControlNet 模型的命名规则。
2024-11-17
sd安装
以下是关于 SD 安装的详细步骤: 1. 系统要求:系统需为 Win10 或 Win11。 2. Win 系统查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:检查自己的电脑配置能否带动 SD的显卡,显卡内存 4GB 以上。 打开任务管理器:同时按下 ctrl+shift+esc。 查看电脑运行内存,8GB 运行内存可以勉强运行 SD,推荐 16GB 以上运行内存。 查看电脑显卡内存(显存),4GB 显存可运行 SD,推荐 8GB 以上显存。 3. 配置达标跳转至对应安装教程页:。 4. 配置不够可选择云端部署(Mac 也推荐云端部署):。 5. 备选:SD 好难,先试试简单的无界 AI:。 补充说明: 如果在以上使用过程中发生错误,那么你可能需要部署一下使用环境,我们再次开启最傻瓜安装教学模式。 1. 安装 cuda_11.8.0_522.06_windows.exe。 2. 安装 VisualStudioSetup.exe,选择 C++的桌面开发安装。以上步骤,我们在安装 roop 的时候也做过,如果安装过 roop 的可以跳过。 3. 拷贝 ninja,打开 ninja 文件包,把里面的内容拷贝到秋叶包根目录。 4. 拷贝 python,打开 python 文件包,把里面的内容拷贝到秋叶包根目录替换。 5. 拷贝模型,SAM 和 GroundingDINO 的模型都在这了,放到对应的文件夹即可。 6. 重启,装好了,重启电脑,即可运行。 关于【SD】无需 Lora,一键换脸插件 Roop 的安装: 安装时间比较长,要耐心等待。安装好之后,打开 SD 文件目录下的这个文件夹。在地址栏输入“cmd”,然后回车。在打开的 dos 界面里面,将“python m pip install insightface==0.7.3 user”粘贴进来,就会自动开始安装 insightface。如果这个阶段出现错误,建议去下载使用最新的秋叶 4.2 整合包(6 月 23 号更新),下载包我已经更新到了云盘里,后台回复【SD】就可以下载。安装完成后,重新打开我们的启动器,后台会继续下载一些模型,此时一定要保证全程科学上网。完成这些后,Roop 插件就可以正常使用了。这个插件主要适用于真实的人脸替换,所以对二次元之类的人物作用不大。我们选用一个真实系模型“realisticVisionV20”,关键词描述的是一个老人举着气球。得到了一张如下的照片。接下来启用 ROOP 插件,选择你想要替换的人物照片,面部修复选择“GFPGAN”。右边的参数数值越低,人物会越像,但是图像会很模糊;数值越高人物越不像,但是图像会很清晰。这个就取决于你的需求了,我使用 0.5 测试一下。最下面还有一个放大算法,可以使用一个模型放大你的图像,基本就相当于高清修复。设置好后,点击生成。可以看到,人脸部分的像素是偏低的,有点模糊。但是没有关系,我们可以将这张图发送到“图生图”,开一个比较小的重绘幅度。然后使用 controlnet 中的 tile 模型进行重绘。换脸完成。如果想要这个插件的话,可以添加公众号【白马与少年】,回复【SD】即可。推荐使用最新的秋叶整合包,出错概率最小,另外,科学上网很重要。特别提醒,此插件谨慎使用,切勿触犯法律。
2024-11-16
coze web sdk 的具体测试的案例
以下是关于 Coze Web SDK 具体测试的案例: 1. 提示词母体测试: 测试平台包括海外版 Coze 和国内版 Coze。 目的是测试提示词母体模板是否能按规定指令进行生成。 测试模型有 Claude3.5 Sonnet等。 进行了现实主义人物角色、虚幻主义人物角色等方面的测试。 测试感受是基线达到,国内外模型都能按要求生成拟人化提示词,但效果不一,Claude 生成质量最好。 2. 分步构建和测试 Agent 功能: 进入 Coze 后,点击「个人空间工作流创建工作流」打开弹窗。 根据弹窗要求自定义工作流信息,确认后完成新建。 左侧「选择节点」模块中,根据子任务需要实际用到插件、大模型、代码等。 编辑面板中的开始节点和结束节点分别对应分解子任务流程图中的原文输入和结果输出环节。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成工作流框架搭建。
2024-11-15
有哪些好用的SD扩图
以下是一些关于 SD 扩图的好用方法和相关信息: 1. 高清修复: 原理是命令 AI 按照原来的内容重新画一幅,新生成的绘图和原来的绘图在细节上会有所不同。 适当降低重绘幅度可以更接近之前的绘图,如 0.2 0.3 能保留较多原有细节,但可能出现如手部等部分的问题,可通过反复抽卡、图生图局部重绘或生成多张图片后 PS 合成等办法解决。 由于渲染耗时较长,建议先采用低分辨率抽卡刷图,抽到喜欢的图后用随机种子固定再进行高清修复。 2. 图生图脚本功能: 文生图画好图后发送到图生图,点击下面的脚本,选择使用 SD 放大。 重绘幅度设置 0.3,放大倍率为 2,图块重叠的像素设置为 64。 这种方式需保持重绘幅度较低,否则可能出现新人物。 3. 超清无损放大器 StableSR: 可以算作“后期处理”的上位替代品,能在尽可能保留原图的情况下更精致地还原原图。 安装方式:在扩展面板中搜索 StableSR 直接安装,或将下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下,安装完成后重启 webUI 即可在脚本中找到。 4. 二维码相关的 SD 扩图: 与第二步相同的关键词和模型,按照特定参数设置,如原本图片尺寸为 1152x1152 ,需要增高高度可设置为(1152x1526)。 对于无法识别处理的情况,可采取提高 ControlNet 的权重、降低重绘幅度、将原始黑白二维码叠加并调节透明度、使劲抽卡等方法。
2024-11-15
SD软件使用
以下是关于 SD 软件使用的相关内容: 1. 软件安装: 系统要求:Win10 或 Win11。 Win 系统查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:需要满足 3 个要求(推荐),电脑运行内存 8GB 以上,是英伟达(NVIDA)的显卡,显卡内存 4GB 以上。打开任务管理器(同时按下 ctrl+shift+esc),可查看电脑运行内存和显卡内存(显存)。8GB 运行内存可勉强运行 SD,推荐 16GB 以上运行内存;4GB 显存可运行 SD,推荐 8GB 以上显存。 安装方式:配置达标可跳转至对应安装教程页。 2. 制作二维码: 使用进行安装。如果使用的是 Colab Notebook,只需在启动时选择 ControlNet。 生成二维码:首先需要一个二维码。为增加成功机会,请使用符合以下条件的二维码。使用高容错设置或草料二维码。具体步骤为:第一步选择文字类型,输入二维码的文字;第 2 步将容错设置为 30%;第 3 步按生成;第 4 步将二维码下载为 PNG 文件。 3. 软件原理理解: 模型下载与放置:不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\\models\\Stablediffusion】文件夹下,在左上角的模型列表中选择(看不到就点旁边的蓝色按钮刷新)。 VAE:相当于给模型增加提高饱和度的滤镜和局部细节微调,有的大模型自带 VAE,可在启动器里面下载,下载的 VAE 放在根目录的【……\\models\\VAE】文件夹。 Embedding:功能相当于提示词打包,可在 C 站通过右上角的筛选 Textual Inversion 找到,放在根目录下的 embeddings 文件夹里。 LORA:可以将人物或者物品接近完美地复刻进图像中,具有极大商用价值,但使用时需注意版权和法律问题。
2024-11-13
SD大模型无法加载
SD 大模型无法加载可能有以下原因及解决方法: 1. LORA 方面: LORA 可以提炼图片特征,文件通常有几十上百兆,承载信息量远大于 Embedding。下载的 LORA 放在根目录的【……\\models\\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载。 使用 LORA 时要注意看作者使用的大模型,一般需配套使用,还可能需要加入特定触发词,如盲盒 LORA 需加入“full body, chibi”等提示词。 2. Hypernetworks 方面: Hypernetworks 主要针对画风训练,文件下载后放在根目录的【…\\models\\hypernetworks】,使用时点击红色小书,找到 Hypernetworks 选项卡加载。 3. 模型下载与安装方面: 常用的模型下载网站有:。 下载模型后需放置在指定目录,大模型(Ckpt)放入【models\\Stablediffusion】,VAE 模型放入【models\\Stablediffusion】或【models\\VAE】目录(有的大模型自带 VAE 则无需再加),Lora/LoHA/LoCon 模型放入【extensions\\sdwebuiadditionalnetworks\\models\\lora】或【models/Lora】目录,Embedding 模型放入【embeddings】目录。模型类型可通过检测。 不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\\models\\Stablediffusion】,在左上角模型列表中选择(看不到就点旁边蓝色按钮刷新)。 旁边的 VAE 相当于给模型增加提高饱和度的滤镜和局部细节微调,可在启动器里下载,放在根目录的【……\\models\\VAE】。 Embedding 功能相当于提示词打包,下载 Embedding 可在 C 站通过右上角筛选 Textual Inversion 找到,放在根目录下的【embeddings】文件夹里。 由于无法确定您大模型无法加载的具体原因,您可以根据上述内容逐一排查。
2024-11-12
chilloutmix模型
以下是关于 chilloutmix 模型的相关信息: 在腊八节相关的生成中,模型为 chilloutmix_NiPrunedFp32Fix,生成尺寸与草稿图保持一致,有正、负面关键词及 ControlNet 设置等具体参数。 在猫猫相关的生成中,虽然作者建议使用 chilloutmix_NiPrunedFp32Fix 模型,但也可以尝试其他模型。 在 AIGC Weekly 09 中,提到从 civitai 下载 ChilloutMix 模型并放到整合包 models\\Stablediffusion 目录里启动 web UI 切换模型。
2024-11-17
我是一名高中历史老师,请问用什么大模型能帮我做教学设计
以下为您推荐一些利用大模型辅助高中历史教学设计的案例: 有一位历史老师使用 GPT 给学生讲课,通过 GPT 生成一个“沉浸式”历史片段游戏,让学生扮演一个角色“设身处地”地做决策,学生的作业是找出 GPT 的错误。例如明朝灭亡、南京、1645 年 5 月的相关案例,您可以参考:https://chat.openai.com/share/86815f4e674c4410893c4ae3f1b7412e/continue 。 对于历史专业的学生,当他们遇到像 ChatGPT 这样的语言模型时,已经训练有素能够识别一些常见的陷阱,如事实不准确等,并通过事实核查、分析体裁和受众、在相关来源中搜索等技能来解决这些问题。 语言模型对于历史学家和历史专业的学生是有益的,但对于历史老师和其他教育工作者在短期内可能会带来一些问题,需要重新思考许多作业的布置方式。 您可以尝试借鉴这些案例,根据您的教学需求和学生特点,对大模型的应用进行调整和优化。
2024-11-17
大模型可以修复老旧的分辨率低的视频吗
大模型在修复老旧低分辨率视频方面是可行的,但具体效果因模型和方法而异。 例如,使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型、StableSR 模块和 VQVAE 等,通过不同的放大方法进行测试。如“Ultimate SD upscale”脚本放大,重绘幅度不同效果有别,重绘幅度大可能导致人物失真。“后期处理”的放大方法能使眼神更锐利,但对模糊的头发改善有限。而 StableSR 的放大则需要进行相应的模型和参数调整。 另外,像 Sora 这样的大型视觉模型,能够在原始尺寸上训练、理解和生成视频及图像。它可以处理不同格式和分辨率的视觉数据,保持原始宽高比,改善生成视频的构图和框架。其基础模型用于低分辨率视频生成,通过级联扩散模型细化提高分辨率,采用 3D UNet 架构,结合多种技术和方法,能生成高保真度且具有可控性的视频。
2024-11-17
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16
什么工具/模型/API 可以根据宠物照片生成数字宠物 可以有简单的活动。
以下是一个可以根据宠物照片生成数字宠物并具有简单活动的工具/模型/API: 出门问问 Mobvoi 的照片数字人工作流及语音合成(TTS)API。 出门问问是一家以生成式 AI 和语音交互为核心的人工智能公司,为全球多个国家提供面向创作者的 AIGC 工具、AI 政企服务,以及 AI 智能硬件。致力于打造国际领先的通用大模型,通过 AI 技术、产品及商业化三位一体发展,致力成为全球 AI CoPilot 的引领者。 在 ComfyUI 全球领导力峰会上,特意搭建了数字人 workflow(照片数字人驱动),仅需上传一张照片,输入一段文字或者上传一段音频,就可以生成短视频让“照片开口说话”。本次活动特意提供了免费 api 额度及操作指南给大家进行体验。以下是一些不同风格的照片驱动效果展示:
2024-11-16