直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

ai幻觉

回答

AI 幻觉是指 AI 系统生成的信息与事实不符或与预期不符,就像在“一本正经地胡说八道”。这并非 AI 故意为之,而是由技术局限性造成的错误。

AI 幻觉的定义为:AI 系统生成的输出内容看似合理流畅,但实际上与输入信息、上下文环境或客观事实相矛盾,缺乏逻辑或经验支撑。其表现形式多种多样,比如生成不存在的人物、地点、事件,或者对已知事实进行错误的描述。

AI 幻觉产生的原因与训练数据的质量、模型的结构和训练策略有关。如果训练数据存在偏差或错误,模型就会学习到这些偏差和错误,并将其体现在生成的内容中。

AI 幻觉存在诸多风险,可能会误导用户,导致用户获取错误信息从而做出错误判断,例如医疗 AI 助手给出错误诊断建议,可能延误患者治疗;可能被用于制造和传播虚假信息,误导公众,影响社会稳定,比如生成虚假新闻报道或社交媒体帖子用于政治宣传或商业炒作;还会损害 AI 系统的可信度,降低用户对 AI 系统的信任度,阻碍 AI 技术推广和应用,比如用户发现 AI 经常“胡说八道”,可能不再信任其判断甚至拒绝使用相关产品。

为了避免 AI 幻觉,您可以参考这是一份避免幻觉的指南,但需要注意的是,AI 幻觉不可能完全消除。另外,AI 不会解释自己,当您要求它解释为何生成某些内容时,它给出的答案可能是完全编造的。在使用 AI 时,您需要对其输出负责,并检查所有内容。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

如何使用 AI 来做事:一份带有观点的指南

[title]如何使用AI来做事:一份带有观点的指南[heading1]写东西为了回应你的答案,AI很容易“产生幻觉”并生成看似合理的事实。它可以生成完全错误的内容,而且非常令人信服。让我强调一下:AI连续且良好地撒谎。它告诉你的每一件事或信息可能都是不正确的。你需要检查所有的东西。你需要全部检查一下。特别危险的是要求它为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)。因为GPT-4通常更加扎实,因为Bing的互联网连接意味着它实际上可以拉入相关事实。[这是一份避免幻觉的指南](https://oneusefulthing.substack.com/p/how-to-get-an-ai-to-lie-to-you-in),但它们不可能完全消除。另请注意,人工智能不会解释自己,它只会让你认为它解释了自己。如果你要求它解释它为什么写东西,它会给你一个完全编造的合理答案。当你询问它的思考过程时,它并没有审查自己的行动,它只是生成听起来像它在做这样的文本。这使得理解系统中的偏见非常困难,尽管这些偏见几乎肯定存在。它也可以被不道德地用来操纵或作弊。你对这些工具的输出负责。

【深度揭秘】AI 幻觉背后的技术真相与应对策略,探索人工智能的未来

[title]【深度揭秘】AI幻觉背后的技术真相与应对策略,探索人工智能的未来[heading1]AI也会犯错?——与人类认知偏差的“镜像”[heading2]表现形式和影响范围:从“个体迷思”到“群体幻象”|||人类认知偏差|AI幻觉|<br>|-|-|-|-|<br>|本质|对信息的扭曲|大脑在处理信息时,为了节省认知资源而采取的“捷径”,这些捷径虽然可以提高效率,但也容易导致对信息的扭曲和误判|模型对训练数据中统计模式的过度依赖,导致其在面对新情况时,无法准确地理解和生成信息,最终输出与现实世界不符的内容|<br>|表现形式|多种多样且难以察觉|确认偏误(只关注支持自己观点的信息)、可得性偏差(更容易回忆起最近或印象深刻的信息)、锚定效应(过分依赖最初获得的信息)|生成不存在的人物、地点、事件,或者对已知事实进行错误的描述。|<br>|产生原因|都与经验和知识有关|与个人的成长经历、文化背景、知识结构等等有关。不同的经验和知识会塑造不同的认知模式,导致人们对相同的信息做出不同的解读|与训练数据的质量、模型的结构和训练策略有关。如果训练数据存在偏差或错误,模型就会学习到这些偏差和错误,并将其体现在生成的内容中|<br>|影响|可能导致错误的决策|可能导致我们在生活中做出错误的判断和选择。例如,一个投资者如果受到可得性偏差的影响,可能会高估近期股市上涨的趋势,从而做出错误的投资决策|可能会误导用户、传播虚假信息、甚至引发安全事故。例如,一个用于医疗诊断的AI系统,如果出现幻觉,可能会给出错误的诊断结果,从而延误患者的治疗|

【深度揭秘】AI 幻觉背后的技术真相与应对策略,探索人工智能的未来

简单来说,AI幻觉是指AI系统生成的信息与事实不符,或者与预期不符,就像人工智能在“一本正经地胡说八道”。这些“胡说八道”不是AI故意的,而是技术局限性造成的错误。AI幻觉的定义可以概括为:AI系统生成的输出内容看似合理流畅,但实际上与输入信息、上下文环境或客观事实相矛盾,缺乏逻辑或经验支撑。[heading2]AI幻觉:“多重面孔”[content]AI幻觉的表现形式多种多样,如下图所示:[heading2]AI幻觉:潜藏的风险[content]AI幻觉看似“小错误”,但在实际应用中可能带来巨大风险。误导用户:AI幻觉会导致用户获取错误信息,从而做出错误判断。例如,医疗AI助手给出错误诊断建议,可能延误患者治疗。传播虚假信息:AI幻觉可能被用于制造和传播虚假信息,误导公众,影响社会稳定。例如,AI可以生成虚假新闻报道或社交媒体帖子,用于政治宣传或商业炒作。损害AI系统的可信度:AI幻觉会降低用户对AI系统的信任度,阻碍AI技术推广和应用。例如,如果用户发现AI经常“胡说八道”,他们可能不再信任AI的判断,甚至拒绝使用AI产品。

其他人在问
AI教育软件或者平台
以下为您介绍一些 AI 教育软件或者平台: 对于中学生学习 AI: 建议从编程语言入手,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,也可以探索面向中学生的平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术(如机器学习、深度学习等)以及在各领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的编程竞赛、创意设计大赛等,尝试用 AI 技术解决实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考其对未来社会的影响。 100 个 AI 应用中的相关平台: 500px 摄影社区:AI 摄影比赛平台,利用图像识别、数据分析技术,举办摄影比赛,展示优秀作品。 Logic Pro X 教学软件:AI 音乐制作教学平台,运用机器学习、音频处理技术,为用户提供个性化教学服务。 鲁班到家 APP:AI 家居维修服务平台,通过数据分析、自然语言处理技术,为用户推荐附近维修人员。 雪球财经 APP:AI 金融投资教育平台,借助数据分析、自然语言处理技术,为用户提供个性化金融投资教育服务。 AI 在教育领域的应用: 个性化学习平台,如 Knewton 平台,利用算法和大数据分析跟踪学生学习进度,诊断难点,提供个性化建议和资源。 自动评估领域,如 Pearson 的 Intelligent Essay Assessor,通过自然语言处理技术批改作文和开放性答案题。 智能辅助教学工具,如 Google 的 AI 教育工具 AutoML,创建定制学习内容,提高学习动机和知识掌握程度。 在虚拟现实(VR)和增强现实(AR)方面,如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生安全进行实验操作并获得反馈。
2024-11-16
做视频需要那些AI工具
以下是一些做视频可能用到的 AI 工具及相关流程: 工具方面: Pika Pixverse Runway SVD 流程方面: 1. 故事构思:确定您要讲述的故事,可以是原创(基于自身或周围人的经历、梦境、想象等),也可以是改编(经典 IP、名著、新闻、二创等)。多与他人讨论故事,不断修改完善。 2. 剧本写作:短片创作篇幅较小,情节和角色相对简单,可从自身经历或短篇故事改编入手。不断实践并总结经验。 3. 图像生成:使用 AI 工具(如 Stable Diffusion 或 Midjourney)根据小说内容生成角色和场景的视觉描述,并创建相应图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要重新编辑某些场景或调整音频。 9. 输出与分享:完成编辑后,输出最终视频并在所需平台分享。 请注意,具体的操作步骤和所需工具可能因项目需求和个人偏好有所不同。同时,AI 工具的可用性和功能可能会变化,建议直接访问工具网址获取最新信息和使用指南。
2024-11-16
适合辅助英语教学的AI助手或者提示词
以下是一些适合辅助英语教学的 AI 助手和提示词相关的信息: AI 助手: Grammarly:可进行英语写作和语法纠错,改进英语表达和写作能力。 Call Annie:用于口语练习和发音纠正,提供实时反馈和建议。 Duolingo:自适应学习平台,为用户量身定制学习计划,提供个性化英语学习内容和练习。 ChatGPT:可进行英语会话练习和对话模拟,提高交流能力和语感。 提示词: 提示词设计公式之——RTFC: 角色:指定 AIGC 所扮演的角色。 任务:明确告诉 AIGC 要完成什么任务。 要求:概述这个任务需要遵守的规则、标准和实现的结果。 说明:提供更多关于任务和要求的详细具体上下文信息。 生成式人工智能教学应用举例(1):收集整理语料: 帮我列举场景下的常用【英语】词汇 50 个。 把以上词汇转换成表格形式输出。 到【医院就医】的时候,常用的【英语】句型有哪些? 用【英语】表达【心情】【不愉快】的句式有哪些? 在【英语高考作文试题】中,常用的表达句型有哪些?并给出例句。 请你给中学生介绍《论语》的主题思想,并将《论语》的 10 条名句翻译成英语。 注:可以把蓝色字体替换成不同的语种和场景,教师根据不同的教学场景,设计恰当的提示词,用生成式人工智能辅助教学。
2024-11-15
阅读新闻的AI工具
以下是一些常见的阅读新闻的 AI 工具: Elicit:可以让用户直接向文章本身提出问题,有助于在不阅读整篇文章的情况下了解其是否涉及所提问题。 ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面的写作辅助,包括阅读相关的应用。 此外,还有一些常见的文章润色 AI 工具: Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了阅读和文章处理的各个环节,可以根据自身需求选择合适的工具进行使用。
2024-11-15
适合辅助教学的AI助手或者提示词
以下是一些适合辅助教学的 AI 助手和提示词相关的内容: 教师的 AI 减负指南中提到,提示词技能是教师用好人工智能的基本教学技能。提示词技能指用户设计提供给生成式人工智能大模型的一段文字或文本的技能,其内容决定了 AIGC 生成内容的质量。提示词设计公式为 RTFC,包括指定 AIGC 所扮演的角色、明确告诉 AIGC 要完成的任务、概述任务需要遵守的规则、标准和实现的结果,以及提供更多关于任务和要求的详细具体上下文信息。例如,生成式人工智能教学应用举例中,教师可以设计提示词“帮我列举场景下的常用【英语】词汇 50 个”“把以上词汇转换成表格形式输出”等。 对于 SD 新手,有一些提示词相关的资源,如 Majinai: 等。 沃顿商学院给教师和学生提供了提示词库,教师专用提示中提到,作为教学助理,要协助教师规划课程,先向老师介绍自己并询问教学科目及学生层次,等待回复。然后根据老师的情况,如是否有教学大纲等,进行后续的沟通和建议。
2024-11-15
最近一个月最重要的AI动态
以下是最近一个月的一些重要 AI 动态: 2024 年 4 月第二周:谷歌发布了一堆 AI 能力和升级,AI 音乐生成工具 Udio 发布,Open AI 发布 GPT4 Turbo 正式版,AI 画图应用 Ideogram 发布模型更新。 2024 年 4 月第三周:Meta 正式发布 Llama3 8B、70B 模型,Open AI 的 Assistants API 更新等,Reka Core 发布,一个 GPT4 级别的多模态 LLM,Mixtral8X22B 模型开源。 2024 年 4 月第四周:Open AI 的动态包括企业服务、起初研究和 ChatGPT 体验优化。 2024 年 5 月第一周:Claude 推出移动应用以及团队版计划,突然爆火的两款 SD 图像风格,亚马逊推出了 Amazon Q AI 助手。 2024 年 5 月第二周:Open AI 高强度预热发布会,Open AI 宣布和 Stack Overflow 达成合作,Controlnet 作者敏神发布 ICLight 光线融合生成项目。 此外,在过去的一段时间里,人工智能行业发展迅速。在过去 12 个月里,人工智能行业是重要的技术发展之一。从 2022 年 9 月到 2023 年 8 月,研究的工具访问量大幅增长。这一飞跃从去年 11 月 ChatGPT 成为最快达到 100 万用户的平台开始,炒作持续攀升,直到 2023 年 5 月达到峰值,之后虽有回落,但人们的兴趣仍然巨大。 另外,关于如何使用 AI 做事,目前似乎没有完善的用户文档,相关指南多通过 Twitter 影响者获得。作者基于自身经验为学生和读者准备的人工智能入门指南也需不断修改。
2024-11-15
AI幻觉问题,如何解决
以下是关于解决 AI 幻觉问题的一些方法: 1. 借鉴人类应对认知偏差的方法:为解决 AI 幻觉问题提供思路,开发相应技术手段,帮助 AI 更好地理解世界,做出更准确的判断。例如对 AI 模型的训练数据进行“大扫除”,去除错误、补充缺失、平衡偏差,让其学习到更真实全面的知识。 2. 打开 AI 的“黑箱”:让 AI 的“思考过程”更透明,便于人类理解和监督。可解释性 AI 技术能帮助理解 AI 模型如何做出判断,避免因错误逻辑或数据导致错误结论。 3. 打造 AI “智囊团”:让多个 AI 模型协同工作,共同解决问题,避免单个模型的局限性导致的错误。 4. 运用提示词工程:在询问代码功能时,要求 AI 逐行解释代码的含义。明确限制 AI 的生成范围,例如在询问名人名言时指定名人姓名和相关主题,在询问新闻事件时指定事件的时间范围和相关关键词。将提示词变得清晰、具体、有针对性,引导 AI 生成更准确可靠的内容。 5. 进行数据“体检”:为 AI 模型提供“干净”“健康”的训练数据,是预防 AI 幻觉的根本措施。包括数据清洗,去除错误信息、补充缺失数据、修正不一致内容,并消除数据中的偏见;数据增强,为模型提供更多更丰富的训练数据,提高模型的泛化能力。
2024-09-02
大模型的幻觉
大模型的幻觉是指模型倾向于生成看似令人信服但是无根据或虚假的回应。这一现象提出了关于模型输出可靠性和可信度的关键问题,需要采取全面的方法来评估和解决这一问题。已有大量研究致力于从各个角度剖析幻觉问题。这包括旨在评估不同模型和场景中幻觉的程度和性质的努力。这些评估提供了宝贵的见解,说明了幻觉如何以及为什么发生,为制定减少其发生的策略奠定了基础。同时,大量研究集中于设计和实施方法以减少这些大型模型中的幻觉。
2024-04-22
解释一下大语言模型的幻觉
大型语言模型有时会产生所谓的“幻觉”。幻觉是指模型在生成文本时产生不准确、误导性或不相关信息的倾向。这种现象通常发生在模型试图填补其知识或理解上的空白时,尤其是在处理复杂、模糊或具有多义性的输入时。 幻觉的原因包括: 过度泛化:模型可能会过度泛化从训练数据中学到的模式,导致在新的或不常见的情境中产生不准确的信息。 缺乏更新信息:由于大型语言模型通常是基于截至特定时间点的数据集进行训练的,它们可能不具备最新的信息或事件更新。 错误的信息源:在训练过程中,模型可能会吸收不准确或误导性的信息,这些信息可能来源于训练数据中的错误或不准确的数据源。 对模糊或歧义输入的误解:当输入信息含糊不清或具有多种解释时,模型可能会生成与原始意图不符的响应。 为了连贯性牺牲准确性:在尝试生成流畅、连贯的文本时,模型有时可能会牺牲信息的准确性。 为了避免幻觉,用户在使用大型语言模型时应该保持警惕,特别是在处理关键决策或需要高度准确性的情境中。验证模型提供的信息,并从多个可靠来源进行交叉检查是非常重要的。此外,随着技术的进步,模型的设计和训练方法也在不断改进,以减少幻觉现象的发生。
2024-04-17