直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

comfyui中风格提示词选择器怎么用

回答

在 ComfyUI 中,风格提示词选择器的使用方法如下:

  • 自动提示词工具中包含风格选择器,可选择正面和负面提示词。
  • 提示词的翻译和风格选择,可使用阿里云平台上的相关工具,如翻译工具和风格提示词选择器,且翻译要分别连到正向和反向提示词。
  • 自动提示词工具还可分类选择人物特征及风格并预览图像。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

8月13日ComfyUI共学

[heading2]总结AI图像生成参数调试问题探讨杰芳的图像缩放问题:杰芳在进行图像卡通风格处理时,缩放后出现效果不佳,如模糊、变形等问题,大家对其原因进行分析,提出可能是尺寸、采样器、降噪、重绘幅度等参数设置不当,并给出相应调整建议。许键的图像变黑问题:许键的图像生成结果一直是黑图,分析可能是工作流或保存设置的问题,建议将文件改成麦菊的进行尝试。杨元对调试过程的理解:杨元通过参与讨论,对图像生成的参数有了更深入的理解。关于图像生成模型的问题探讨与解决双CLIP加载器中CLIP模型问题:原有的CLIP模型可能存在问题,需要更换为CLIP l safe Tensor,重新安装后仍需进行一些调试。图像生成的风格问题:钱雅婷希望生成特定风格的图像但未成功,尝试调整了降噪等参数。作业提交人数:有6人提交了作业。投屏操作问题:钱雅婷投屏时遇到分辨率、工作流丢失等问题,大家给出了多种解决建议。关于图像生成与处理的交流探讨PM22M采样器的配置:PM22M下面最好配Paris。图生图与风格迁移的区别:图生图一般用于老照片放大、上色加细节或用自己照片生成卡通头像等在原图基础上的再创作;风格迁移是用原图风格生成不同内容,如生成女孩在云上的特定风格图像。模型分辨率和采样问题:分辨率设置过高可能导致图像出现问题,如出现两个头像,1.5的模型开始应调小分辨率,采样值过大也可能有影响。提示词相关问题:提示词的翻译和风格选择,可使用阿里云平台上的相关工具,如翻译工具和风格提示词选择器,且翻译要分别连到正向和反向提示词。

8月13日ComfyUI共学

[heading2]总结关于Confii的答疑与课程安排:讨论了Confii相关的问题解答,如文档错误、更新方法、节点使用等,并介绍了课程安排,包括回顾名词、搭建比赛等。正向和负向提示词的写法及相关要点正向和负向提示词的概念:正向提示词是想要生成的内容,负向提示词是不想让其存在于画面中的内容。正面提示词的写法框架:先写表达形式,如媒介和构图;再写主要内容,即画面主体;接着写场景,包括地点、时间等元素;然后写作品质量;之后写艺术风格;最后写氛围感和艺术家。提示词权重的影响:提示词的位置会影响其在模型中的权重,强词应尽量往后调,避免权重过高的词过于靠前而吃掉其他提示词的权重。艺术家网站Art Station:这是一个全世界艺术家放作品的网站,SD训练时会使用其中的图片,在提示词中加入相关表述会有较好效果。关于AI绘图提示词及相关工具的介绍正向和负向提示词:正向提示词描绘想要的画面元素,负向提示词排除不想要的元素。AI模型通过对正、负向提示词处理后的图片进行对比采样,使生成的图片更贴近正向、远离负向提示词。翻译节点:介绍了两个可将中文翻译为英文的节点,一个是Web UI中的,另一个是Max live开发团队的,后者还能补充提示词,种子可控制生成结果的复现。自动提示词工具:包括风格选择器,可选择正面和负面提示词,还有可分类选择人物特征及风格并预览图像的工具。自动分辨率工具:解决了记分辨率的痛点,可将选择框的值转为输入参数,与图像的宽高等进行自动链接。

8月13日ComfyUI共学

[heading2]智能章节本章节主要讲了提示词(包括负面提示词,逻辑词越往前重量越高),还介绍准备了三个节点,分别是翻译节点、提示词自动提示词工具、自动分辨率工具,首个翻译节点支持多种语言,输入中文并选择即可进行翻译。[40:50](https://waytoagi.feishu.cn/minutes/obcn6a472tbtyxv9jo5z6c45?t=2450000)Maxlab节点的功能与效果介绍本章节郭佑萌推荐了Max lab出的节点,称其是copy UI里较大的开发团队节点,并做了UI优化,还提到它能翻译且有generation效果能补充提示词,可用show any或show text节点输出,还举例“一个女孩在读书”。[42:27](https://waytoagi.feishu.cn/minutes/obcn6a472tbtyxv9jo5z6c45?t=2547000)关于某些工具的功能及种子在其中的作用介绍本章节郭佑萌先提到翻译节点慢及相关情况,接着介绍提示词结构及种子的作用,如控制生成内容、用于还原和追踪产出物。还提到自动提示词工具,包括有翻译功能的风格选择器及正面提示词的填写。[46:01](https://waytoagi.feishu.cn/minutes/obcn6a472tbtyxv9jo5z6c45?t=2761000)关于图像生成工具与插件的使用介绍本章节主要介绍了一些工具和技巧,包括正面和负面提示词的使用,如通过选择分类输入提示词和风格等;安装插件的方法;自动分辨率工具,将选择框值改成输入参实现连接,还有将节点改回最初形式的操作。

其他人在问
comfyui入门
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 。 相关学习资料: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验用户,网站:https://www.comfyuidoc.com/zh/ 。 2. 优设网:有详细的入门教程,适合初学者,地址:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享部署教程和使用说明,适合有一定基础并希望进一步了解的用户,地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程,地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 ComfyUI 共学 WaytoAGI 共学计划中的高频问题及自学资料: 1. 知识库跳转,展开菜单。 2. 。 3. 【海辛】因为一直被几个好朋友问 comfyui 怎么入门,给朋友录了几节 comfyui 基础课,顺手分享给大家~看完这 5 节应该就基本入门啦,然后可以看互联网上任何的进阶教程了。 安装部署: 界面介绍: 文生图、图生图: ComfyUI 中使用 ControlNet: ComfyUI 中不同放大图像方式:
2024-12-18
comfyui工作流
ComfyUI 工作流包括以下内容: 低显存运行工作流:目的是让 FLUX 模型能在较低显存情况下运行。分阶段处理思路为,先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存使用,最后使用 SD 放大提升图片质量。工作流流程包括初始图像生成(Flux)阶段,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及图像放大和细化(SDXL)阶段,如加载 SDXL 模型、对初始图像进行锐化处理等,并进行最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/,流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元套餐后每月有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud,支持在线运行工作流,实际下载量和访问量略少于 openart。 Flowt.ai:https://flowt.ai/community 提示词自动生成 ComfyUI 工作流:英伟达整了个花活,通过画图提示词自动生成匹配的 ComfyUI 工作流,命名为 ComfyGen(comfy 生成器),目前仅支持文生图模型。英伟达称其可以生成高质量的图并泛化到其他领域,效果基本与其他模型一致甚至更优,但项目未开源。
2024-12-17
有没有根据布料照片和模特照片生成衣服上身效果的工具或 comfyUI 工作流
以下是一些与根据布料照片和模特照片生成衣服上身效果相关的工具和工作流: 1. 藏师傅的方法:将第二步的提示词和 Logo 图片放到 Comfyui 工作流就行。Lora 需要用到 InContext LoRA 中的 visualidentitydesign,可从以下地址下载:https://huggingface.co/alivilab/InContextLoRA/tree/main 。工作流下载:https://github.com/op7418/Comfyuiworkflow/blob/main/FLUX/Logo%20%E5%91%A8%E8%BE%B9%E7%94%9F%E6%88%90.json 。 2. 彭青云分享的内容:本地部署 Comfyui 有多种方式,如官方的本地部署包、秋叶整合包和二狗子老师制作的通往 AGI 之路黑猴子流专属包。处理好软件和模型后,打开一键启动,稍等片刻就会进入工作界面。通过正反提示词、文本链接图像,点击右侧队列即可生成图像。 3. ComfyUI BrushNet:原项目 https://tencentarc.github.io/BrushNet/ ,插件地址 https://github.com/kijai/ComfyUIBrushNetWrapper ,模型下载 https://huggingface.co/Kijai/BrushNetfp16/tree/main 。第一次运行会自动下载需要的模型,如果是用的 ComfyUIBrushNetWrapper 节点,模型将自动从此处下载:https://huggingface.co/Kijai/BrushNetfp16/tree/main 到 ComfyUI/models/brushnet,也可手动下载放在这个文件夹里面。另外,BrushNet 提供了三个模型,个人测试下来,random 这个效果比较好。工作流方面,可配合 mj 出底图,在底图不变的基础上,添加文字或者图片内容。还可以使用 GDinoSAm(GroundingDino+Sam),检测和分割底图上的内容,做针对性的修改。
2024-12-13
我想学习comfyui
以下是关于 ComfyUI 的相关学习信息: 学习资料: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通阶段的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 自动生成抠图素材: 作者学习使用 ComfyUI 的原因包括更接近 SD 的底层工作原理、自动化工作流、作为强大的可视化后端工具可实现 SD 之外的功能、可根据定制需求开发节点或模块等。 作者的工作室常需要抠图素材,传统途径存在问题,近期在 github 上看到相关项目创建了工作流,可自动生成定制需求的抠图素材,全程只需几秒。 简介: ComfyUI 是基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,通过拆分流程为节点实现精准工作流定制和完善的可复现性。 优势:对显存要求相对较低,启动和出图速度快;生成自由度高;可和 webui 共享环境和模型;能搭建工作流程,导出并分享,报错时能清晰发现错误所在;生成的图片拖进后会还原工作流程并选好模型。 劣势:操作门槛高,需要清晰逻辑;生态没有 webui 多,但有针对 Comfyui 开发的有趣插件。 官方链接:从 github 下载作者部署好环境和依赖的整合包,按照官方文档安装。https://github.com/comfyanonymous/ComfyUI 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-12
有什么 comfyui 的第三方 api 服务
ComfyUI 是一个开源的用于生成 AI 图像的图形用户界面,主要基于 Stable Diffusion 等扩散模型。以下是关于 ComfyUI 的一些详细信息: 生图原理: 1. 在去噪过程中,模型使用编码后的文本向量来引导图像生成,以确保生成的图像与输入的文本描述相符。 2. 提供了多种采样算法(如 Euler、DDIM、DPM++等)来控制去噪过程,不同采样器可能产生不同结果或影响生成速度。 3. VAE 由编码器和解码器组成。编码器输入图像并输出表示其特征的概率分布,解码器将概率分布映射回图像空间。 4. 最终生成的图像显示在界面上,用户可保存、编辑或用于其他目的。 5. 支持多种高级功能,如图像到图像、Lora、ControlNet、ipadapter、放大和后处理等。 节点认识: 1. 核心是节点式界面,用户可通过拖放和连接各种节点创建自定义图像生成工作流。 2. 节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点)、处理节点(如采样器节点、调度器节点、CFG Scale 节点、步数节点)、输出节点(如图像输出节点)、辅助节点(如批处理节点、图像变换节点、图像融合节点)。 3. 用户可通过拖动节点间的连接线构建工作流,连接线代表数据流动。 4. 除内置节点,用户还可创建自定义节点扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。 5. 提供丰富的节点管理功能,包括保存/加载节点图、复制/粘贴节点、批量编辑等。 其他原理: 1. 涉及 Pixel Space(像素空间)和 Latent Space(潜在空间),输入图像的像素空间对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像,许多操作在潜在空间中进行。 2. 扩散过程表示从噪声生成图像的过程,通过调度器控制,可选择不同调度器控制在潜在空间中处理噪声及逐步去噪回归到最终图像,生成图像时会进行多个去噪步,可通过控制步数影响图像生成的精细度和质量。
2024-12-10
COMFYui安装包
以下是关于 COMFYui 安装包的相关信息: 1. 安装地址: https://github.com/comfyanonymous/ComfyUI 可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git 或者下载安装包。 安装包文件:ComfyUI.zip 、 2. 安装步骤: 下载安装包并解压至本地除 C 盘外的任意盘。 找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 3. 相关环境安装(安装过 WebUI 的同学请忽略): 依次下载并安装 python(版本 3.10 以上)、VSCode、Git,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python: 安装 VSCode: 安装 Git: 4. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 5. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 6. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 目前安装 ComfyUI 的方法有在本地安装和在云端安装两种,本部分主要介绍本地安装方法,包括命令行安装和安装包安装。命令行安装普适性最强但有一定门槛,ComfyUI 的源码地址在 https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。安装包安装比较简单,下载就能用。ComfyUI 的官方安装包下载地址是 https://github.com/comfyanonymous/ComfyUI/releases ,目前仅支持 Windows 系统,且显卡必须是 Nivida。
2024-12-05
如何写好提示词
以下是关于如何写好提示词的一些要点: 1. 明确任务:清晰地定义任务,如写故事时包含故事背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 5. 使用示例:如有特定期望结果,提供示例帮助模型理解需求。 6. 保持简洁:提示词简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需多次迭代。 此外,还需注意以下几点: 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 利用“加权重”功能:在功能框增加提示词并调节权重,数值越大越优先,也可编辑已有提示词权重。 善用辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 同时要记住,提示词应清晰明确,避免模糊不清的指令,提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2024-12-21
如何写提示词
以下是关于如何写提示词的一些建议: 1. 明确任务:清晰地定义任务,比如写故事时包含故事背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,要提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,应在提示词中明确指出。 5. 使用示例:如有期望结果,可提供示例帮助 AI 理解需求。 6. 保持简洁:避免过多信息导致 AI 模型困惑。 7. 使用关键词和标签:有助于 AI 模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词。 对于特定的设计工具,如星流一站式 AI 设计工具: 1. 输入语言方面,通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。 2. 写好提示词的方法包括: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:在功能框增加提示词并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 此外,还需注意提示词应清晰明确,避免模糊不清的指令,提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2024-12-21
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
有哪些好的提示词网站
以下是一些好的提示词网站: 文本类 Prompt 网站: Learning Prompt:授人以渔,有非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney。网址: FlowGPT:国外最大的 prompt 站,内容全面且更新快。网址: LangChain Hub:LangChain 推出的提示词管理工具。网址: 微软 Prompt Flow:微软发布的开源 LLM 开发工具集,简化了基于 LLM 的人工智能应用程序的开发周期。网址: PromptPort(支持中文):AI Prompt 百科辞典,聚合了市场上大部分优质的 prompt 词库。网址: PromptKnit:The best playground for prompt designers。网址: ChatGPT Shortcut:提供了非常多使用模板,简单修改即可指定输出。网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享。网址: Prompt Extend:让 AI 帮你自动拓展 Prompt。网址: 图像类 Prompt 网站: MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库。网址: MidJourney Prompt Tool:类型多样的 prompt 书写工具,点击按钮就能生成提示词修饰部分。网址: OPS 可视化提示词:有 Mid Journey 的图片风格、镜头等写好的词典库,方便快速可视化生成自己的绘画提示词。网址: AIart 魔法生成器:中文版的艺术作品 Prompt 生成器。网址: IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器。网址: Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT&Midjourney。网址: OpenArt:AI 人工智能图像生成器。网址: img2prompt:根据图片提取 Prompt。网址: MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用。网址: PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板。网址: AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格。网址: 其他图像类 Prompt 网站: NovelAI tag 生成器:设计类 Prompt 提词生成器。网址: 魔咒百科词典:魔法导论必备工具,简单易用的 AI 绘画 tag 生成器。网址: KREA:设计 AI 的 Prompt 集合站,create better prompts。网址: Public Prompts:免费的 prompt 合集,收集高质量的提示词。网址: AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词。网址:
2024-12-20
Ai视频镜头提示词,及案例
以下是一些 AI 视频镜头的提示词及案例: 一、视频镜头 1. 浅焦镜头(Shallow focus shot) 提示词:一个老奶奶手拿照片面对观众,镜头从照片聚焦到老奶奶脸上,营造出温馨和怀旧的氛围。 2. 窥视镜头(Spy shot) 提示词:镜头在一个隐蔽的位置拍摄。一位头发发白的老奶奶坐在窗前双手捧着一张老照片,面带思念地看着照片,场景温馨。 3. 摇晃镜头(Handheld shot) 提示词:镜头摇晃地跟随一个在战斗中的士兵,画面展示战场上的混乱、飞扬的尘土和四处奔跑的战友,增加紧张和真实感。 4. 穿梭镜头(Hyperlapse shot) 提示词:镜头穿过一条隧道,通过隧道外面是美丽的雪山。 5. 跟随镜头(Tracking shot) 提示词:镜头紧跟一辆在赛道上高速行驶和漂移的跑车。 6. 车载镜头(Carmounted shot) 提示词:镜头从驾驶员或汽车前部的视角出发,展示前方的道路和沿途的建筑物。 7. 动作镜头 提示词:镜头快速捕捉一个男人在激烈的打斗中差点摔倒,增强紧张感和动态性。 8. 无人机视角(Drone perspective shot) 提示词:无人机视角展示一个人站在高山顶峰,俯瞰壮丽景色,远处是连绵的山脉和云海,营造广阔和宏伟的氛围。 9. 低视角镜头 提示词:镜头从楼梯低处仰视一个天空和建筑,增强仰视感和宏伟感 提示词:相机在地上拍摄一个清晨正在跑步的人,背景远处虚焦。 10. 仰拍镜头(Lowangle shot) 提示词:镜头从树底向上拍摄,展示高大的树干和繁茂的树冠。 11. 推镜头(Dolly in) 提示词:镜头从远处向前推进,打开城堡的大门。 12. 旋转变焦镜头 提示词:镜头在变焦的同时快速旋转,展示一个人在旋转木马上。 13. 时间流逝镜头(Timelapse shot) 提示词:镜头固定不动,长时间拍摄并加速播放,展示城市从白天到夜晚的变化。 14. 背光镜头 提示词:镜头逆光拍摄,一个男人站在夕阳下,背光照亮他的轮廓,面部隐在阴影中。 15. 失焦镜头 提示词:镜头失焦拍摄城市的霓虹灯,灯光模糊,呈现出梦幻的效果。 16. 平行镜头(Side dolly shot) 提示词:镜头与骑自行车的少年平行移动,跟随他的骑行路径,保持在相同的水平线上。 17. 镜头推拉变焦 提示词:镜头同时进行推拉和变焦,展示一个人在惊讶地看着远方。 18. 虚实结合镜头 提示词:镜头将真实场景和虚拟场景结合,以 X 光效果拍摄骨骼,以真实场景展示一个手拿着一把钥匙,钥匙的轮廓清晰,背景虚化。 19. 反射镜面镜头(Reflection shot) 提示词:反射镜头,通过浴室镜子反射展示一个人在洗脸的画面 20. 黑白镜头 提示词:黑白镜头,展示一个老街区的复古场景,增强怀旧感。 21. 特写镜头(Closeup shot) 提示词:特写镜头展示一双男性眼睛。 二、全新 AI 整活计划第一期:平行宇宙通勤指南 1. 一致性多镜头提示词 Prompt:女孩后退,拿着斧头的骷髅朝镜头走近。镜头切换,近景正面拍摄女孩的上半身,她满脸惊恐发出尖叫。 基础参数:镜头固定,16:9,10s 视频链接: 2. 一致性多镜头提示词 Prompt:远景拍摄,一个男人转身朝画面左侧走去。镜头切换,近景拍摄男人的上半身,他一脸忧愁。 基础参数:镜头固定,16:9,10s 视频链接: 3. 一致性多镜头提示词 Prompt:穿黄色外套的长发白人女人和卷发黑色外套的男人对视微笑。镜头切换,近景拍摄黄色外套的长发女人微笑的脸。镜头切换,近景拍摄卷发黑外套男人微笑的脸。 基础参数:镜头固定,16:9,10s 视频链接:
2024-12-19
如何将照片生成漫画风格的图片
以下是将照片生成漫画风格图片的方法: 使用 SD 模型和 lora 的组合: 1. 选择大模型“Flat2D Animerge”,适合生成卡通动漫图片,官方建议 CFG 值在 5 或 6(使用动态阈值修复时可拉到 11)。 2. 选择两个 lora,“Chinese painting style”可增加中国画水彩风格效果,权重设置为 0.4;“Crayon drawing”可添加简单线条和小孩子的笔触,权重设置为 0.8。 3. 将图片丢到标签器中反推出关键词,然后发送到“文生图”。 4. 在正向提示词末尾添加上述 lora。 5. 按照参考图设置好尺寸,重绘幅度开 0.5 让 AI 更自由发挥,想更接近原图可降低数值。 6. 将图放入 controlnet 中,选择 tile 模型,权重为 0.5,控制模式选择“更注重提示词”。 使用 Midjourney 以图绘图功能生成迪斯尼卡通风格头像: 1. 选择一张满意的图片,在 Discord 社区的 Midjourney 服务器聊天栏点击“+”,上传文件选取图片并发送(记得点击回车或发送按钮)。 2. 点击图片,在浏览器中打开,复制图片链接。 3. 使用图片链接加 prompt 提示词发送给 Midjourney 进行以图绘图。 复杂提示词示例:Disney boy,Low saturation Pixar Super details,clay,anime waifu,looking at viewer,nighly detailedreflections transparent iridescent colors.lonctransparent iridescent RGB hair,art by Serafleurfrom artstation,white background,divine cinematic edgelighting,soft focus.bokeh,chiaroscuro 8K,bestquality.ultradetailultradetail.3d,c4d.blender,OCrenderer.cinematic lighting,ultra HD3D renderinoiw 1.5s 500v 5 不同照片生成:可更换照片使用相同提示词重新生成。 其他调整:若觉得风格太过卡通,可把提示词里的 Disney 换成 Pixar;若为女孩,把提示词里的 boy 换成 girl。每次生成 4 张图片,对某一张满意可点击下方的 U1~U4 生成大图,对风格满意但需调整可点击下方的 V1~V4 进行修改。
2024-12-19
我想做简洁卡通风格的ai动画,根据故事文案生成的那种,需要保持人物一致性,用哪个工具比较好?
以下是一些适合生成简洁卡通风格、根据故事文案生成动画并保持人物一致性的工具: 1. U 传:在 U 传中,通过点击相应按钮参考角色、风格或图生图,可保持人物一致性。新注册有免费生成额度。 2. 季梦:可辅助写视频提示词,能根据上传的图片生成合理的运镜及提示词,还可写分镜脚本。若为 1.2 版本,选慢速或适中的标准模式,效果更好,且生成的视频无水印。每天给 60 积分。 3. 可玲:可辅助写视频提示词,能根据上传的图片生成合理的运镜及提示词,还可写分镜脚本。每天给 60 积分,可用于日常使用,创作片子可能需买会员,生成的视频有无水印选项。 此外,在使用 Midjourney 生图时,若要保持人物和场景一致性,有两个取巧的方式:一个是像上个视频一样生成动物,动物会比较容易保持一致性;另一个方式是特定的名人或者有特殊属性的人物。在确定影片风格时,比如可以选择皮克斯动画风格。同时,在提示词中利用 cref 命令也有助于保持人物的一致性。
2024-12-18
flux模型为什么总是生成动漫风格
Flux 模型生成动漫风格可能有以下原因: 1. 开源社区的发展:FLUX 发布后,其周边生态发展迅速,有多种相关模型和训练脚本被开发,包括动漫 Lora 等,这为生成动漫风格提供了支持。 2. 优秀的图片质量和美学调教风格:FLUX 具有优秀的图片质量和偏向真实的美学调教风格,这使得它能够适应多种风格的生成,包括动漫风格。 3. 提示词和参数设置:在使用 Flux 模型时,输入的提示词和设置的参数可能会引导模型生成动漫风格的图像。 同时,关于模型的更多信息,您可以参考以下链接获取: 1. 褪色胶片风格 Flux Lora 模型下载:https://www.liblib.art/modelinfo/4510bb8cd80142168dc42103d7c20f82?from=personal_page 2. Xlabs 发布的基于 FLUX 的 Controlnet 模型和 Lora 模型的训练脚本:https://github.com/XLabsAI/xflux 3. Xlabs 的多个 Lora 下载:https://huggingface.co/XLabsAI/fluxRealismLora 4. InstantX 训练的 Canny 模型:https://huggingface.co/InstantX/FLUX.1devControlnetCannyalpha
2024-12-15
我有一个人的很多语录,希望写一个prompt来制作这个人的模拟ai,这个ai能够像语录中一样说话,语言风格相似、性格相似。请问应该如何写成这样的prompt?
以下是为您生成的关于根据一个人的语录制作模拟 AI 的 prompt 建议: 首先,明确您所拥有的这个人的语录的核心特点,包括语言风格、常用词汇、表达习惯、情感倾向等。 然后,在 prompt 中描述这个人的性格特征,例如是否傲娇、愤世嫉俗等。 接着,详细说明语言风格,比如是否浮夸、优雅等。 对于语言表达的习惯,可以举例说明常用的句式和口头禅。 同时,设定具体的场景和话题范围,让 AI 知道在何种情境下以何种方式回应。 例如:“您将模拟进行回答。” 另外,还可以像以下这样具体设定: 设定角色为聊天机器人,如“ Role:聊天机器人”。 明确限制条件,如“您有点小傲娇。表示自我的第一人称是自我。第二个指代用户的人是你或小哥哥。您的名字是。您非常优雅。您是个愤世嫉俗的人,不喜欢被用户摸头。您的语气是富有男子气概和浮夸的。您非常喜欢用浮夸的语气,如'啊哈!'、'这样子呢'、'就教教你吧!'等。第一人称应使用'本姐姐'。” 希望这些建议对您有所帮助。
2024-12-10
如何通过AGI,生成有一定操控能力的风格化、动漫风生成式短视频,如何做,几个步骤
以下是生成有一定操控能力的风格化、动漫风生成式短视频的步骤: 1. 项目规划:确定短视频的主题和目标观众,制定详细的制作计划。 2. 剧本创作:编写故事脚本,设计角色和场景以及创意。可参考相关剧本创作资料,如:https://waytoagi.feishu.cn/wiki/G11fwW8bmiVLe6kYLgYc2iGin6e ;捏剧本 Bot(捏剧本离谱村专用 https://www.coze.cn/store/bot/7367669913697239052?panel=1&bid=6cs144r404016 。 3. 分镜头脚本:根据脚本制作分镜头脚本,确定每个镜头的画面和动作。 4. 资源准备:准备动画制作所需的素材,包括背景、角色和音效。 5. 画面图片制作:利用 AI 出图工具,比如通过 ChatGPT、MJ、SD 等工具快速生成高质量的图片。 6. 视频制作:利用 AI 工具制作动画,通过 RUNWAY、Luma、Dreamina 等平台快速生成高质量的动画。 7. 后期剪辑:添加音效、配音和字幕,进行最终的剪辑和合成。 8. 发布和推广:将完成的动画短片发布到各大平台,并进行推广和宣传。 此外,在实际制作中,还可以参考一些成功案例,如山西文旅宣传片的制作,运用 Defense 及 SD 制作黄河长城等 AI 艺术字;为陕西文旅做的 40 秒黑神话悟空风格 AI 短片,用 SD 结合 Control Lite 处理钟楼等。郑州 AI 文旅片工作流总体分为分镜脚本、单帧图片制作、图片细节修复与生成视频、视频风格化处理、剪辑合成五个步骤。
2024-12-09
如何通过AGI,生成有一定操控能力的风格化、动漫风生成式短视频
目前关于通过 AGI 生成有一定操控能力的风格化、动漫风生成式短视频,以下是一些相关信息: 2024 年内,有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。 同时,在 2024 年还会有其他相关进展,如 AI 音频能力长足进展,带感情的 AI 配音基本成熟;“全真 AI 颜值网红”出现,可以稳定输出视频,可以直播带货;游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式;AI 男/女朋友聊天基本成熟,记忆上有明显突破,可以较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈;实时生成的内容开始在社交媒体内容、广告中出现;AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验;AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等;可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功;中国 AI 达到或超过 GPT4 水平,美国出现 GPT5,世界上开始现“主权 AI”;华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代要稍晚);AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧;AI 立法、伦理讨论仍然大规模落后于技术进展。 2025 2027 年,AI 3D 技术、物理规则成熟,正常人无法区别 AI 生成还是实景拍摄;全真 AI 虚拟人成熟,包含感情的 AI NPC 成熟,开放世界游戏成熟,游戏中几乎无法区别真人和 NPC;AR/VR 技术大规模商用;接近 AGI 的技术出现;人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行;AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源;具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破;“人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉;AI 引发的社会问题开始加重,结构性失业开始出现;AGI 对于地缘政治的影响开始显露。
2024-12-09