直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

有什么 comfyui 的第三方 api 服务

回答

ComfyUI 是一个开源的用于生成 AI 图像的图形用户界面,主要基于 Stable Diffusion 等扩散模型。以下是关于 ComfyUI 的一些详细信息:

生图原理

  1. 在去噪过程中,模型使用编码后的文本向量来引导图像生成,以确保生成的图像与输入的文本描述相符。
  2. 提供了多种采样算法(如 Euler、DDIM、DPM++等)来控制去噪过程,不同采样器可能产生不同结果或影响生成速度。
  3. VAE 由编码器和解码器组成。编码器输入图像并输出表示其特征的概率分布,解码器将概率分布映射回图像空间。
  4. 最终生成的图像显示在界面上,用户可保存、编辑或用于其他目的。
  5. 支持多种高级功能,如图像到图像、Lora、ControlNet、ipadapter、放大和后处理等。

节点认识

  1. 核心是节点式界面,用户可通过拖放和连接各种节点创建自定义图像生成工作流。
  2. 节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点)、处理节点(如采样器节点、调度器节点、CFG Scale 节点、步数节点)、输出节点(如图像输出节点)、辅助节点(如批处理节点、图像变换节点、图像融合节点)。
  3. 用户可通过拖动节点间的连接线构建工作流,连接线代表数据流动。
  4. 除内置节点,用户还可创建自定义节点扩展功能,自定义节点安装目录为 D:\ComfyUI\custom_nodes。
  5. 提供丰富的节点管理功能,包括保存/加载节点图、复制/粘贴节点、批量编辑等。

其他原理

  1. 涉及 Pixel Space(像素空间)和 Latent Space(潜在空间),输入图像的像素空间对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像,许多操作在潜在空间中进行。
  2. 扩散过程表示从噪声生成图像的过程,通过调度器控制,可选择不同调度器控制在潜在空间中处理噪声及逐步去噪回归到最终图像,生成图像时会进行多个去噪步,可通过控制步数影响图像生成的精细度和质量。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

ComfyUI的生图原理 副本

在去噪过程中,模型使用编码后的文本向量来引导图像生成。这确保了生成的图像与输入的文本描述相符。[heading1]五、采样器[content]ComfyUI提供了多种采样算法(如Euler,DDIM,DPM++等)来控制去噪过程。不同的采样器可能会产生略微不同的结果或影响生成速度。[heading1]六、Vae编码[content]VAE是一种基于概率生成模型的框架,它由编码器(Encoder)和解码器(Decoder)组成。(1)编码器:编码器的任务是输入一幅图像,输出一个表示该图像特征的概率分布。这个概率分布通常是一个高斯分布,其均值和方差分别表示图像的特征。(2)解码器:解码器的任务是将编码器输出的概率分布映射回图像空间。它接收一个随机采样的噪声向量(来自编码器输出的概率分布),通过一系列的卷积层和非线性激活函数,生成与输入图像相似的图像。[heading1]七、结果输出[content]最终,ComfyUI将生成的图像显示在界面上,用户可以保存、进一步编辑或用于其他目的。[heading1]八、额外控制[content]ComfyUI支持多种高级功能,如:图像到图像:使用现有图像作为起点进行生成。Lora:使用额外的小型模型来调整风格或内容。ControlNet:允许用用额外的图像来精确控制生成过程。ipadapter:使用参考图像进行风格迁移生成。放大和后处理:改善生成图像的质量和分辨率。

3、节点认识 副本

ComfyUI的核心是它的节点式界面。用户可以通过拖放和连接各种节点来创建自定义的图像生成工作流。以下是对ComfyUI节点系统的详细介绍:[heading2]节点类型[content]ComfyUI提供了多种不同类型的节点,包括:1.输入节点:文本提示节点:用于输入生成图像的文本描述图像输入节点:用于输入基础图像进行二次生成噪声节点:用于输入初始噪声图像1.处理节点:采样器节点:选择图像生成所使用的采样器调度器节点:选择图像生成所使用的调度器CFG Scale节点:调整引导式采样的强度步数节点:设置图像生成的迭代步数2.输出节点:图像输出节点:显示生成的最终图像3.辅助节点:批处理节点:支持批量生成多个图像图像变换节点:提供图像旋转、翻转等功能图像融合节点:可以将多个图像合并成一个[heading2]节点连接[content]用户可以通过拖动节点之间的连接线来构建整个工作流。连接线代表了数据在节点之间的流动。例如,您可以将文本提示节点连接到采样器节点,再连接到图像输出节点,形成一个完整的文本到图像生成流程。[heading2]节点自定义[content]除了使用内置节点,用户还可以创建自定义节点来扩展ComfyUI的功能。这为高级用户和开发者提供了极大的灵活性。自定义节点可以是新的输入、处理或输出节点,甚至是复杂的子工作流。这使得ComfyUI能够适应各种独特的图像生成需求。自定义节点安装目录:D:\ComfyUI\custom_nodes[heading2]节点管理[content]ComfyUI提供了丰富的节点管理功能,包括保存/加载节点图、复制/粘贴节点、批量编辑等。这些功能使得创建和重复使用工作流变得更加容易。

ComfyUI的生图原理 副本

ComfyUI是一个开源的图形用户界面,用于生成AI图像,主要基于Stable Diffusion等扩散模型。想要达到精准控制图像生成就要了解他的底层原理,这样才能做到什么时间什么节点用什么办法对其精准控制,以下是其工作原理的详细解释:[heading3]Pixel Space和Latent Space[content]Pixel Space(像素空间):图的左边表示输入图像的像素空间,在ComfyUI中,这个对应于你可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。在生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。Latent Space(潜在空间):ComfyUI中的应用:ComfyUI的许多操作都在潜在空间中进行,如KSampler节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在ComfyUI中,你可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。这部分通常由潜在空间操作模块来实现。[heading3]2.扩散过程(Diffusion Process)[content]噪声的生成和逐步还原:扩散过程表示的是从噪声生成图像的过程。在ComfyUI中,这通常通过调度器(Schedulers)控制,典型的调度器有Normal、Karras等,它们会根据不同的采样策略逐步将噪声还原为图像。你可以通过ComfyUI中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数TTT:在生成图像时,扩散模型会进行多个去噪步。图中展示的zTz_TzT代表不同时间步长下的潜在表示。在ComfyUI中,你可以通过控制步数来影响图像生成的精细度和质量。

其他人在问
我想找关于视觉识别相关的api
很抱歉,目前知识库中没有关于视觉识别相关 API 的具体信息。但您可以通过以下途径寻找: 1. 一些知名的云服务提供商,如阿里云、腾讯云、百度云等,它们通常提供视觉识别相关的 API 服务。 2. 专门的人工智能和计算机视觉技术公司的官方网站,可能会有相关的 API 介绍和使用文档。 3. 技术社区和开发者论坛,例如 CSDN、掘金等,您可以在这些地方与其他开发者交流,获取相关的推荐和经验分享。
2024-12-19
API是什么
API 就像是一个信差,它接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 以搜索“奥本海默”的页面为例,网址中的域名(如 www.themoviedb.org)指定了网站的位置,路径(如 /search)指定了特定页面的位置,查询参数(如 query=奥本海默)则明确了具体的搜索内容。 对于获取数据,如图片地址“backdrop_path”,可能不完整,需要参考 API 文档来构造完整的地址。对于一些不熟悉的 API,需要在 Prompt 里告知如何使用。 Action 的工作流大致为:先思考想要做什么样的 GPT 以及是否需要外部数据;然后寻找所需的外部数据的 API 文档,或自己开发 API 并寻找可用的 Action;最后基于 API 文档编写 Action 里的 Schema 和 Prompt 来处理取回的信息。 如果对 Action 很感兴趣,可以从系统学习 API 相关知识、寻找可用的 API 练习、发掘 GPT Action 更多潜力等方向继续前进。
2024-12-16
在使用openai api的时候,同一轮对话,需要每次都传system prompt吗?可以利用什么session id来减少system prompt的显示调用吗
在使用 OpenAI API 进行同一轮对话时,系统提示的使用并非每次都必须传递。系统提示在对话中类似于一个过滤器,大语言模型在回应新提示前会自动应用。一般来说,系统提示包括任务定义、输出格式和操作边界等部分,以确保大语言模型清楚任务、按要求格式化回答以及明确不应采取的行为。 另外,OpenAI 还推出了 Stateful API,开发者只需传入最新的对话记录,大模型会结合该记录和其维护的历史记录依据上下文产生新内容。Stateful API 的实现机制类似于 KV Cache,能指数级降低大模型应用的开销,提升计算速度。例如,在不使用 cache 的情况下,使用 GPT2 生成 1000 个 Token 将耗时 56 秒,而使用 cache 的耗时则被降低为 11 秒。可以预期 Stateful API 会采用类似于 KV Cache 的机制,缓存用户对话的历史记录,并在每次 API 调用中,使用增量信息结合服务端的历史记录生成文本,以此降低计算规模。 但关于是否可以利用 session id 来减少系统提示的显示调用,目前提供的知识库中未提及相关内容。
2024-12-11
API是什么
API 就像是一个信差,它接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 以搜索“奥本海默”的页面为例,网址中的域名(如 www.themoviedb.org)指定了网站的位置,路径(如 /search)指定了特定页面的位置,查询参数(如 query=奥本海默)则明确了具体的搜索内容。 对于获取数据,如图片地址“backdrop_path”,可能不完整,需要参考 API 文档来构造完整的地址。对于一些不熟悉的 API,需要在 Prompt 里告知如何使用。 Action 的工作流大致为:先思考想要的 GPT 类型及是否需要外部数据;然后寻找所需的外部数据的 API 文档,或自行开发 API 并寻找可用的 Action;最后基于 API 文档编写 Action 里的 Schema 和 Prompt 来处理取回的信息。
2024-12-10
动物开口说话、对口型的api
以下为您介绍一些关于动物开口说话、对口型的 API 相关信息: 即梦 AI: 对口型功能是即梦 AI 「视频生成」中的二次编辑功能,现支持中文、英文配音。 目前主要针对写实/偏真实风格化人物的口型及配音生成,为用户的创作提供更多视听信息传达的能力。 可上传包含完整人物面容的图片,进行视频生成,待视频生成完成后,点击预览视频下的「对口型」按钮,输入台词并选择音色,或上传配音文件进行对口型效果生成。目前支持语言:中文(全部音色),英文(推荐「超拟真」内的音色)。 技巧:上传写实/近写实的人物单人图片,目前不支持多人物图片对口型;输入 prompt,选择参数,点击生成视频,尽量确保人物无形变等扭曲效果;确保人物生成的情绪与希望匹配的口型内容匹配;在生成的视频下方,点击【对口型】;输入或上传需要配音的内容,注意视频生成时长和配音试听时长尽量对齐,点击生成;先对口型,再超分补帧。 快手可灵 AI: 快手旗下可灵 AI(Kling AI)新增对口型功能,全面开放 API,并支持创意圈发布作品。 希望以上内容对您有所帮助。
2024-12-09
如何用国内版coze的api,能举两个例子吗?
以下是两个关于国内版 Coze 的 API 使用示例: 1. 创建自己的插件: 进入 Coze 的个人空间,选择插件,新建一个插件并命名,例如 api_1。 在插件的 URL 部分,填入通过 Ngrok 随机生成的 https 链接地址。 按照 Coze 的指引配置输出参数,测试后发布插件。 基于创建好的插件,创建一个测试 api 的 bot,并将创建的插件接进来,在 prompt 里设置调用插件。 2. 打造微信图片助手: 确保已掌握通过 COW 接入微信机器人的方式,并在 chatgptonwechat 中的 config.json 中配置好自己的 Coze API Key 和 Coze Bot ID。 利用 Coze 新发布的 API 更新中的多模态对话和知识库修改能力,为接入微信的 Bot 增加图片相关功能,如总结图片内容、重绘图片风格等。
2024-12-03
comfyui入门
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 。 相关学习资料: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验用户,网站:https://www.comfyuidoc.com/zh/ 。 2. 优设网:有详细的入门教程,适合初学者,地址:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享部署教程和使用说明,适合有一定基础并希望进一步了解的用户,地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程,地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 ComfyUI 共学 WaytoAGI 共学计划中的高频问题及自学资料: 1. 知识库跳转,展开菜单。 2. 。 3. 【海辛】因为一直被几个好朋友问 comfyui 怎么入门,给朋友录了几节 comfyui 基础课,顺手分享给大家~看完这 5 节应该就基本入门啦,然后可以看互联网上任何的进阶教程了。 安装部署: 界面介绍: 文生图、图生图: ComfyUI 中使用 ControlNet: ComfyUI 中不同放大图像方式:
2024-12-18
comfyui工作流
ComfyUI 工作流包括以下内容: 低显存运行工作流:目的是让 FLUX 模型能在较低显存情况下运行。分阶段处理思路为,先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存使用,最后使用 SD 放大提升图片质量。工作流流程包括初始图像生成(Flux)阶段,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及图像放大和细化(SDXL)阶段,如加载 SDXL 模型、对初始图像进行锐化处理等,并进行最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/,流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元套餐后每月有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud,支持在线运行工作流,实际下载量和访问量略少于 openart。 Flowt.ai:https://flowt.ai/community 提示词自动生成 ComfyUI 工作流:英伟达整了个花活,通过画图提示词自动生成匹配的 ComfyUI 工作流,命名为 ComfyGen(comfy 生成器),目前仅支持文生图模型。英伟达称其可以生成高质量的图并泛化到其他领域,效果基本与其他模型一致甚至更优,但项目未开源。
2024-12-17
有没有根据布料照片和模特照片生成衣服上身效果的工具或 comfyUI 工作流
以下是一些与根据布料照片和模特照片生成衣服上身效果相关的工具和工作流: 1. 藏师傅的方法:将第二步的提示词和 Logo 图片放到 Comfyui 工作流就行。Lora 需要用到 InContext LoRA 中的 visualidentitydesign,可从以下地址下载:https://huggingface.co/alivilab/InContextLoRA/tree/main 。工作流下载:https://github.com/op7418/Comfyuiworkflow/blob/main/FLUX/Logo%20%E5%91%A8%E8%BE%B9%E7%94%9F%E6%88%90.json 。 2. 彭青云分享的内容:本地部署 Comfyui 有多种方式,如官方的本地部署包、秋叶整合包和二狗子老师制作的通往 AGI 之路黑猴子流专属包。处理好软件和模型后,打开一键启动,稍等片刻就会进入工作界面。通过正反提示词、文本链接图像,点击右侧队列即可生成图像。 3. ComfyUI BrushNet:原项目 https://tencentarc.github.io/BrushNet/ ,插件地址 https://github.com/kijai/ComfyUIBrushNetWrapper ,模型下载 https://huggingface.co/Kijai/BrushNetfp16/tree/main 。第一次运行会自动下载需要的模型,如果是用的 ComfyUIBrushNetWrapper 节点,模型将自动从此处下载:https://huggingface.co/Kijai/BrushNetfp16/tree/main 到 ComfyUI/models/brushnet,也可手动下载放在这个文件夹里面。另外,BrushNet 提供了三个模型,个人测试下来,random 这个效果比较好。工作流方面,可配合 mj 出底图,在底图不变的基础上,添加文字或者图片内容。还可以使用 GDinoSAm(GroundingDino+Sam),检测和分割底图上的内容,做针对性的修改。
2024-12-13
我想学习comfyui
以下是关于 ComfyUI 的相关学习信息: 学习资料: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通阶段的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 自动生成抠图素材: 作者学习使用 ComfyUI 的原因包括更接近 SD 的底层工作原理、自动化工作流、作为强大的可视化后端工具可实现 SD 之外的功能、可根据定制需求开发节点或模块等。 作者的工作室常需要抠图素材,传统途径存在问题,近期在 github 上看到相关项目创建了工作流,可自动生成定制需求的抠图素材,全程只需几秒。 简介: ComfyUI 是基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,通过拆分流程为节点实现精准工作流定制和完善的可复现性。 优势:对显存要求相对较低,启动和出图速度快;生成自由度高;可和 webui 共享环境和模型;能搭建工作流程,导出并分享,报错时能清晰发现错误所在;生成的图片拖进后会还原工作流程并选好模型。 劣势:操作门槛高,需要清晰逻辑;生态没有 webui 多,但有针对 Comfyui 开发的有趣插件。 官方链接:从 github 下载作者部署好环境和依赖的整合包,按照官方文档安装。https://github.com/comfyanonymous/ComfyUI 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-12
COMFYui安装包
以下是关于 COMFYui 安装包的相关信息: 1. 安装地址: https://github.com/comfyanonymous/ComfyUI 可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git 或者下载安装包。 安装包文件:ComfyUI.zip 、 2. 安装步骤: 下载安装包并解压至本地除 C 盘外的任意盘。 找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 3. 相关环境安装(安装过 WebUI 的同学请忽略): 依次下载并安装 python(版本 3.10 以上)、VSCode、Git,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python: 安装 VSCode: 安装 Git: 4. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 5. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 6. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 目前安装 ComfyUI 的方法有在本地安装和在云端安装两种,本部分主要介绍本地安装方法,包括命令行安装和安装包安装。命令行安装普适性最强但有一定门槛,ComfyUI 的源码地址在 https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。安装包安装比较简单,下载就能用。ComfyUI 的官方安装包下载地址是 https://github.com/comfyanonymous/ComfyUI/releases ,目前仅支持 Windows 系统,且显卡必须是 Nivida。
2024-12-05
在comfyui中节点报错UNETLoader Error
很抱歉,仅根据您提供的“在 ComfyUI 中节点报错 UNETLoader Error”这一信息,无法明确具体的错误原因和给出准确的解决方案。可能导致此报错的原因有多种,比如模型文件损坏、加载路径错误、相关依赖未正确安装等。建议您进一步检查报错的详细信息、模型文件的完整性以及相关配置是否正确。
2024-12-04
nova有个图生视频的功能,但是只能生成6秒钟,我要如何组合服务去实现可以文生长视频并且也可以图生长视频呢
以下是一些实现文生长视频和图生长视频的方法: 1. 使用 PixVerse V2 模型: 单个视频生成(8s):8s 的视频生成需要花费 30 Credits,5s 的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. 利用 runway: 视频的大部分片段用 runway(https://app.runwayml.com/)制作,少数的片段用的是即梦(https://jimeng.jianying.com/aitool/home)的动效画板和首尾帧。 以汽车内饰这一片段为例,登录 runway 账户后,在首页的左侧点击“Text/Imagine to Video”,中文即是“文生视频/图生视频”。点击 2 处将汽车内饰的图片上传到 runway 中。其中 1 处可以更改生成图片所用到的大模型版本,数字越大代表模型越强。目前只有 Gen2 每天有免费额度。3 处用于输入提示词。4 处可以修改生成的视频时长为 5s 或 10s,时长越长,生成的效果可能越不稳定。5 处可以看到生成的结果。提示词方框中输入的运镜方式“Roll Clockwise Shot slowly”是,即摄像机围绕垂直轴顺时针旋转,常用于创造动态的、有时令人眩晕的视觉效果。不想动脑的话,每个片段的运镜方式根据分镜表的建议来即可。运镜提示词该如何填写呢?可以参照:。runway 对于这些专有的运镜方式理解的很好。其他的提示词可以不填,先看看效果,如果效果不好,再补充简短的提示词重新生成视频。很多时候提示词过多,生成的视频就很怪异,像吃了毒蘑菇后看到的幻觉一样。改变提示词,改变生成时长,多抽卡几次,毕竟 runway 会员可以无限抽卡。 3. 海外产品 viva: viva 发布了首个开放给全部用户使用的 Sora 同架构视频生成模型,而且现阶段免费。支持文本生成视频、图片生成视频以及 4K 分辨率放大功能,另外也支持提示词的自动优化。文生视频单次可以生成一条 5 秒的视频,图生视频是 4 秒视频。
2024-12-19
假设我建立一个针对中小企业的Ai落地赋能服务中心,结合目前中国市场比较成熟的Ai产品、技术、服务、培训等等内容,应该怎么设计这个中心
目前中国市场上成熟的 AI 产品、技术、服务和培训内容丰富多样。要设计针对中小企业的 AI 落地赋能服务中心,以下是一些建议: 产品方面: 引入适合中小企业业务流程的自动化软件,如智能客服系统、智能办公软件等。 提供基于 AI 的数据分析工具,帮助企业进行市场预测和客户洞察。 技术方面: 配备专业的技术团队,能够为企业提供 AI 技术的集成和定制化开发服务。 关注前沿的 AI 技术,如机器学习、深度学习、自然语言处理等,并将其转化为可应用的解决方案。 服务方面: 提供一站式的服务,包括需求评估、方案设计、实施部署和后续维护。 建立快速响应机制,及时解决企业在使用 AI 过程中遇到的问题。 培训方面: 设计针对不同层次员工的培训课程,涵盖基础知识普及、操作技能提升和高级应用开发等。 采用线上线下相结合的培训方式,满足企业员工的多样化学习需求。 同时,服务中心还需要建立良好的沟通渠道,与中小企业保持密切联系,了解他们的实际需求和反馈,不断优化和完善服务内容和方式。
2024-12-19
企业级的ai服务或者解决方案有哪些
以下是一些企业级的 AI 服务或解决方案: 1. 美国的 Zephyr AI 公司,于 2024 年 3 月 13 日完成 A 轮融资,融资金额 1.11 亿美元,主营 AI 药物发现和精准医疗。 2. Together AI 公司,2024 年 3 月 13 日完成 A 轮融资,融资金额 1.06 亿美元,从事 AI 基础设施和开源生成。 3. Glean 公司,2024 年 2 月 27 日完成 D 轮融资,融资金额 2.03 亿美元,专注于 AI 驱动企业搜索。 4. Figure 公司,2024 年 2 月 24 日完成 B 轮融资,融资金额 6.75 亿美元,业务为 AI 机器人。 5. Abridge 公司,2024 年 2 月 23 日完成 C 轮融资,融资金额 1.5 亿美元,从事 AI 医疗对话转录。 6. Recogni 公司,2024 年 2 月 20 日完成 C 轮融资,融资金额 1.02 亿美元,提供 AI 接口解决方案。 在 AI 应用方面: 1. AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术,市场规模达数十亿美元。 2. 淘宝拍照搜商品,通过图像识别和机器学习技术,市场规模达数百亿美元。 3. 小爱同学、Siri 等 AI 语音助手定制开发,运用语音识别和自然语言理解技术,市场规模在百亿美元以上。 4. Keep 智能训练计划,基于数据分析和机器学习,市场规模达数十亿美元。 5. 大众点评智能推荐,借助数据挖掘和自然语言处理,市场规模达百亿美元规模。 6. 阿里小蜜等电商客服,采用自然语言处理和机器学习技术,市场规模达数十亿美元。 影刀 RPA + AI Power 具有以下特点: 1. 功能亮点:集成丰富的 AI 组件及各种技能组件,拓展 AI 服务的能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现 AI 自动化操作。 2. 无缝多样的使用方式:提供网页分享、对话助理、API 集成等嵌入方式,方便企业在不同业务场景下灵活选择接入方式,打通分散的系统,实现便捷的 AI 交互。 3. 贴身的企业级服务支持:提供教学培训、技术答疑、场景共创等贴身服务,帮助企业把产品用起来,把 AI 落地下去,找到最佳实践,助力业务成功。
2024-12-19
技术服务 大模型 研究报告
以下是为您提供的关于技术服务大模型研究报告的相关内容: 1. 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 原文链接:https://mp.weixin.qq.com/s/dYLqW8dNOcQw59UtQwXNgA 来源:质朴发言 发文时间:2024.01.22 内容:近期生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,优化了从视觉输入到语言输出的转换过程。报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。报告包括视觉分析技术、图像语言模型、视频语言模型、LLM 多模态 Agent、应用场景、未来发展方向、References 和附录等内容。应用场景包括多模态内容理解与处理、智能交互与自动化、具身智能、未来发展趋势(2024?)、视频生成模型 mapping 等。未来发展方向包括技术路径利用预训练 LLM 进行指令调整,应用场景赋予机器理解多模态的能力。 2. 《小 A技术开发/大模型 知识库文章索引》 作者: 文章: 《Perplexity 指标究竟是什么?》:作者从自己实际入坑的经验出发,尝试总结梳理出新手友好的 transformer 入坑指南。计划从算法 1:NLP 中的 transformer 网络结构、算法 2:CV 中的 transformer 网络结构、算法 3:多模态下的 transformer 网络结构、训练:transformer 的分布式训练、部署:transformer 的 tvm 量化与推理五个方面对 transformer 进行介绍。 《初探 LLM 基座模型》:主要介绍 LLM 基座模型里常见的 3 种 transformer 架构,encoderonly,encoderdecoder 和 decoderonly。 《ChatBot 是怎么炼成的?》:介绍了 LLM 基座大模型下游应用 ChatBot 的研发过程,在介绍 ChatBot 之前,先介绍了 LLM 在辅助编程方面的应用,包括 Codex 和 AlphaCode 两个奠基性工作。 3. 2024 年 9 月 26 日的相关报告 中国信通院和阿里云计算:《》,探讨了大模型技术的发展、面临的安全挑战以及在安全领域的应用潜力。 其它报告: 科大讯飞:《》 智能小巨人科技:《》 电子发烧友:《》 您可以根据具体需求,进一步查阅相关报告获取更详细的信息。
2024-12-19
有什么智能服务系统
以下是一些智能服务系统的例子: 1. 高风险人工智能系统: 用于招聘或选拔自然人的系统,包括发布有针对性的招聘广告、分析和过滤求职申请以及评估候选人。 用于工作关系决策、任务分配、人员绩效和行为监督评估的系统。 公共机关或代表公共机关使用的评估自然人获得基本公共援助福利和服务资格的系统。 评估自然人信用度或确定其信用评分的系统(用于侦查金融欺诈的除外)。 在人寿保险和健康保险方面用于自然人风险评估和定价的系统。 用于对自然人的紧急呼叫进行评估和分类,或用于调度或确定调度紧急应急服务优先次序,以及紧急医疗保健病人分流的系统。 2. 智能助产术教学法的学习支持系统: 服务器系统由 ChatGPT 和 QQ 服务器系统组成。 ChatGPT 服务器系统由 ChatGPT 服务器和代理服务器组成,前者是 OpenAI 公司为用户提供的云服务支持,后者是用户根据需求利用的信息中转站。 QQ 服务器系统由 QQ 服务器和代理服务器组成,教师在其中公布协作方式、评价机制与参与角色,智慧大脑利用相关信息组织协作方式等。 3. 汽车行业中的智能服务系统: 自动驾驶技术,利用 AI 进行图像识别、传感器数据分析和决策制定。 车辆安全系统,如自动紧急制动、车道保持辅助和盲点检测系统。 个性化用户体验,根据驾驶员偏好和习惯调整车辆设置。 预测性维护,通过分析车辆实时数据预测潜在故障和维护需求。 生产自动化,用于汽车制造过程中的生产线自动化。 销售和市场分析,帮助汽车公司理解客户需求、制定营销策略和优化产品定价。 电动化和能源管理,在电动汽车的电池管理和充电策略中发挥作用。 共享出行服务,优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐,允许驾驶员通过语音命令控制车辆功能等。 车辆远程监控和诊断,提供实时诊断和支持。
2024-12-18
城市智能充电服务系统建设方案
很抱歉,目前知识库中没有关于城市智能充电服务系统建设方案的相关内容。但一般来说,建设城市智能充电服务系统可以从以下几个方面考虑: 1. 需求分析:了解城市中电动汽车的数量、分布以及用户的充电需求和习惯。 2. 站点规划:根据需求分析结果,合理规划充电站点的位置,考虑交通便利性、电力供应等因素。 3. 技术选型:选择适合的充电技术,如交流慢充、直流快充等,并确保设备的稳定性和安全性。 4. 电力供应:与电力部门合作,确保充电站点有稳定的电力供应,并优化电力分配。 5. 网络连接:实现充电站点的网络连接,便于远程监控、管理和支付。 6. 运营管理:建立有效的运营管理机制,包括设备维护、用户服务、费用结算等。 7. 安全保障:采取防火、防雷、防盗等安全措施,保障充电设施和用户的安全。 8. 数据分析:收集和分析充电数据,为优化服务和站点布局提供依据。 以上只是一个初步的框架,具体的建设方案还需要根据城市的实际情况进行详细的调研和规划。
2024-12-17