直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI生态图

回答

AI 生态图主要包括以下内容:

  • 关于 AI 产业的产业链结构,大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。
    • 基础设施层布局投入确定性强,但资金投入巨大,入行资源门槛高,未来国内可能更多由“国家队”负责,普通人可考虑“合作生态”切入机会。
    • 技术层处于技术爆炸时刻,迭代速度快,小规模团队需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。
    • 应用层是广阔蓝海,当前从业者增加但成熟应用产品不多,“杀手级”应用稀少,普通个体和小团队推荐重点布局,有超级机会和巨大发展空间。
  • 对于 AI 产业上中下游重点关注的企业(或产品),作者做了大量信息收集和汇总工作并绘制了相关图谱,但未避免广告嫌疑不展开详细说明,推荐搜索不了解的公司/平台(或产品)了解。
  • 在游戏领域,生成式 AI 有影响,如从文本提示生成 2D 图像的工具 Midjourney、Stable Diffusion 和 Dall-E 2 等,已应用于游戏开发和制作的多个阶段,Midjourney 容易上手且图像生成速度快。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

走入AI的世界

关于AI产业的产业链结构,大致可分为:上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发),详细内容参见图5。图5 AI产业链图谱-1对于这上中下游分别有哪些值得我们重点关注的企业(或产品),我在公开互联网上苦寻良久,始终找不到一张满意的图(要么维度不全,要么举例不准,有失公允),于是我做了大量的信息收集和汇总工作,并结合几家知名咨询机构的文档,绘制了这样一张图。图6 AI产业链图谱-2图6中有大量细节,其中各家公司的logo排列顺序综合考虑了其市占率,行业影响力,代表性等因素,积淀深厚的老牌大厂和值得关注的亮眼新星均有体现,未避免广告嫌疑,在这里不展开对其进行详细说明了,如果有大家不了解不认识的公司/平台(或产品),非常推荐你搜索了解一下(注:此图绘制于2024年5月)。

生成式AI在游戏领域的机会(市场假设+预测)

下图为整体的市场生态情况,描述了A16Z在各个类别中发现的创业公司,在这些具体的项目中,我们看发现了生成式人工智能(AIGC)对游戏的影响,本篇会对每个类别中最有特点的公司和机会进行介绍。用文本生成平面图像(2D Images)从文本提示中生成2D图像,已生成式人工智能最为广泛的应用领域之一。诸如Midjourney、Stable Diffusion和Dall-E 2这样的工具,直接可以将文本描述生成高质量的二维图像,并且它们用在了游戏开发和制作的整个生命周期的多个阶段。(注释:这里解释一下Midjourney也是比较容易用的AI图像生成器,更容易上手,图像生成速度很快,1分钟内可以出4张图)概念艺术(Concept Art)

走入AI的世界

我们来简要概括说说这张图中每一层的商机洞察(以下内容仅代表个人观点,供参考):1.目前来看,基础设施层布局投入的确定性最强,以发展的眼光看,当前算力缺口巨大,但这部分涉及到海量的资金投入,入行资源门槛较高,作为关键的基础设施,国内未来更多的将会由“国家队”扛起重任。普通人如果没有强资源需谨慎入局,因为很可能你无法快速对接到客户资源,等不到赚钱就现金流断裂,可以更多的考虑“合作生态”的切入机会。2.技术层当前仍然处于技术爆炸时刻,相关技术的迭代速度可以夸张点用“日新时异”来形容,迭代进步飞速,如果你或你的团队规模不大,但又有志于做这一层相关的事情,须慎重考虑“技术迭代风险”的问题(例如基于某种开源模型更进一步训练垂直领域模型,很可能等你训练出来的时候,更强更新的开源模型已经发布,让你的工作意义大打折扣),至于基础的通用大模型,非巨无霸公司就不是很建议考虑了,搞基础大模型的研发是一件十分烧钱的事情,且众多互联网大厂,AI独角兽,知名高校都已悉数下场神仙打架,完成了布局,开启了“百模大战”,但竞争的终局,只会有少数赢家。应用界不需要那么多同质化的大模型,最后多半是赢家通吃的局面。3.应用层是一片时代赋予我们的广阔蓝海,尽管2024年这个方向的从业者在飞速增加,也涌现出一批做垂直产业/行业/细分领域垂直模型或大模型应用的产品,但坦诚的讲,以我们自身的深度实践和用户的切实需求来看,当前针对行业/细分领域的成熟应用产品并不多,让人哇塞的“杀手级”应用更是凤毛麟角。对于普通个体和小团队,强烈推荐重点思考和布局应用层,这一层拥有超级机会和巨大发展空间。

其他人在问
AI基础学习课程
以下是为新手提供的 AI 基础学习课程相关内容: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 实践和尝试:理论学习后,实践是巩固知识的关键,可尝试使用各种产品创作作品,知识库中有很多实践后的作品和文章分享。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 此外,还有以下具体的课程推荐: 【野菩萨】课程:预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。若想免费获得该课程,可参与 video battle,每期冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。扫码添加菩萨老师助理可了解更多课程信息。 微软 AI 初学者入门课程:包括特定的机器学习云框架,如了解更多详情。深度学习背后的深层数学(Deep Mathematics)可参考 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》(Deep Learning)一书,该书可在 https://www.deeplearningbook.org/上获取。
2024-12-19
AI有哪些技术
AI 技术包括以下方面: 技术发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 如果您想在 AI 领域深入学习,学习路径如下: 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 此外,在健身领域,以下是一些 AI 产品: Keep:中国最大的健身平台,为用户提供全面的健身解决方案,以帮助用户实现其健身目标。https://keep.com/ Fiture:沸彻魔镜由核心 AI 技术打造,集硬件、丰富课程内容、明星教练和社区于一体。https://www.fiture.com/ Fitness AI:利用人工智能进行锻炼,增强力量和速度。https://www.fitnessai.com/ Planfit:健身房家庭训练与 AI 健身计划,AI 教练是专门针对健身的生成式人工智能,使用 800 多万条文本数据和 ChatGPT 实时提供指导。https://planfit.ai/
2024-12-19
AI领域最前沿技术的最核心的论文
以下是为您整理的关于 AI 领域最前沿技术核心论文的相关内容: 1. 《Attention is All You Need》:这篇由 Google Brain 团队撰写的论文介绍了 Transformer 架构,彻底改变了 AI 领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。 2. 杰弗里·辛顿(Geoffrey E. Hinton)的相关论文: 描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958 年)。 描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974 年)。 “Kinetic Proofreading:1974 年)。 “神经网络和具有突发性集体计算能力的物理系统”(1982 年)(被称为 Hopfield 网络)。 与 D.W.Tank 合著的“优化问题中决策的神经计算”(1985 年)。 在这篇文章中,作者分享了一份用于更深入了解现代 AI 的精选资源列表,称其为“AI 典藏”。这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。同时,还介绍了 AI 技术的发展历程,如 2015 年 AI 系统的局限性,以及 Transformer 架构出现后为 OpenAI 发展带来的影响。
2024-12-19
流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作流程图的 AI 工具: 1. Lucidchart: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. ChatGPT: 确定制作目标。 通过自然语法描述逻辑,生成 Mermaid 图形语法。 在线校验测试是否成功。
2024-12-19
上面的流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作您所描述的流程图的 AI 工具: Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据您的项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 此外,文中还提到了关于智能体和人工智能在解决科学问题方面的一些相关内容,但未直接涉及流程图制作工具的更多信息。
2024-12-19
我是一名计算机专业学生,给我一份进入ai行业的指南
以下是为您提供的进入 AI 行业的指南: 一、学习计划 如果您想入门强化学习,可以将搞懂 DQN 算法作为目标。参考链接:https://github.com/ty4z2008/Qix/blob/master/dl.md 。但需注意,其中资料众多,如同大海捞针,所以在学习前要先明确目的。 二、信息源 1. 简报 TLDR AI: The Sequence: Deep Learning Weekly: Ben’s Bites: Last week in ai: Your guide to AI: 2. 播客 No Priors podcast hosted by Sarah Guo 和 Elad Gil Robot Brains Podcast hosted by Pieter Abbeel Lex Fridman Podcast hosted by Lex Fridman The Gradient podcast hosted by Daniel Bashir Generally Intelligent hosted by Kanjun Qiu Last Week in AI 3. 会议 World AI Cannes Festival 三、知识获取 欢迎来到“AI 企业落地应用”专栏,这里会分享 AI 技术在商业场景中的应用案例和经验。为方便不同背景的读者,文章会采用通俗有趣的方式讲解知识,可能存在专业性不严谨的情况,会有标注提示。对于超纲或专业的内容,也会有标注,可放心跳过。文末会有论文推荐导引,帮助您了解技术细节。
2024-12-19
aigc的当前生态
AIGC 的当前生态主要包括以下方面: 1. 概述:GenAI(生成式 AI)能够从已有数据中学习并生成新的数据或内容,利用 GenAI 创建的内容即 AIGC。作为强大的技术,能赋能诸多领域,但存在合规风险,我国对 AIGC 的监管框架由多部法律和规定构成。 2. 分类:AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用多种模型,如 GPT4 和 GeminiUltra;图像生成依赖多种技术,代表项目有 Stable Diffusion 和 StyleGAN 2;音视频生成利用多种模型,代表项目有 Sora 和 WaveNet。 3. 应用领域:AIGC 可应用于音乐生成、游戏开发、医疗保健等领域,在游戏开发和制作的整个生命周期的多个阶段都有应用,例如用文本生成平面图像,像 Midjourney、Stable Diffusion 和 DallE 2 等工具可将文本描述生成高质量二维图像。 4. 产品原型设计工具:目前有 UIzard、Figma、Sketch 等基于 AIGC 的工具可用于产品原型设计,其 AI 功能包括自动生成设计元素、提供设计建议、优化用户界面布局等。随着技术发展,未来可能会有更多专门针对产品原型设计的 AIGC 工具出现。
2024-12-13
大模型生态
以下是关于大模型生态的相关信息: Qwen 系列开源模型表现出色,是国内唯一出现在 OpenAI 视野里、能参与国际竞争的国产大模型。其在相关榜单中多次上榜,得分不断提高,累计下载量突破 1600 万,国内外有大量开发者基于其开发模型和应用,尤其在企业级领域。通义大模型证明了开源开放的力量。 AI 大模型是全球数字技术体系的竞争,包括芯片、云计算、闭源模型、开源模型、开源生态等。基础大模型决定产业智能化的天花板等,开源生态在竞争中至关重要。 在 100 基础训练大模型中,Lora 生图环节有诸多设置,如模型强度调节、添加 lora 文件、输入正向提示词、选择生成图片数量和尺寸、调整采样器和调度器等。设置完成后点击开始生成,若对生成结果满意可复制随机种子用于下次近似生成,也可进行高清修复和放大。今日作业要求按照比赛要求收集主题素材并训练提交 lora 模型与案例图像。 奇绩创坛潜空间分享会中,杨植麟提到大模型公司倾向面向生产力场景,目前业界卡在数据方面,应用公司在非生产力场景投入产出比更高,大模型开发者生态差是因为不具备高替换成本和规模效应等条件,做事应遵循寻找梯度最大方向并优化的原则。
2024-12-11
AI生态图
AI 生态图主要包括以下内容: 1. AI 产业的产业链结构大致分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 基础设施层布局投入确定性强,但资金投入大,入行资源门槛高,未来国内可能更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 技术层处于技术爆炸期,迭代速度快,小规模团队需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层是广阔蓝海,当前从业者增加但成熟应用产品不多,“杀手级”应用稀少,普通个体和小团队推荐重点布局,有超级机会和巨大发展空间。 2. 关于 AI 产业上中下游重点关注的企业(或产品),作者做了大量信息收集和汇总工作并绘制了图,但未避免广告嫌疑不展开详细说明,建议搜索不了解的公司/平台(或产品)了解。 3. 在游戏领域,生成式 AI 有影响,如从文本提示生成 2D 图像是广泛应用领域之一,像 Midjourney、Stable Diffusion 和 DallE 2 等工具可用于游戏开发和制作的多个阶段,Midjourney 容易上手,图像生成速度快。
2024-11-28
请你以大疆产品为例,谈一谈未来大疆是否应该发展二手机的生态?如果你是二手业务的负责人,你会如何做?
大疆作为一家知名的科技公司,其产品在市场上具有较高的声誉和用户满意度。关于未来大疆是否应该发展二手机生态,这需要综合多方面因素来考虑。 从市场需求角度来看,随着消费者对性价比的追求以及环保意识的增强,二手机市场存在一定的潜力。然而,大疆产品通常以其先进的技术和高品质著称,二手机可能会面临技术更新换代快、维修保障等问题。 如果我是二手业务的负责人,首先会进行充分的市场调研,了解消费者对于大疆二手机的需求、价格预期以及关注点。建立严格的二手产品检测和评估标准,确保二手大疆产品的质量和性能符合一定的标准。同时,提供完善的售后服务和维修支持,让消费者购买二手产品无后顾之忧。还会制定合理的价格策略,既要保证有一定的利润空间,又要具有市场竞争力。此外,加强与大疆官方的合作,获取更多的技术支持和资源,共同推动二手机生态的发展。
2024-08-11
Dify怎么对接微信生态
在 Dify 的官网,我为你找到了一篇手把手教你如何将 Dify 应用接入微信生态的教程: 1. 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目:下载并安装依赖。 3. 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 5. 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:
2024-04-15