直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型生态

回答

以下是关于大模型生态的相关信息:

  • Qwen 系列开源模型表现出色,是国内唯一出现在 OpenAI 视野里、能参与国际竞争的国产大模型。其在相关榜单中多次上榜,得分不断提高,累计下载量突破 1600 万,国内外有大量开发者基于其开发模型和应用,尤其在企业级领域。通义大模型证明了开源开放的力量。
  • AI 大模型是全球数字技术体系的竞争,包括芯片、云计算、闭源模型、开源模型、开源生态等。基础大模型决定产业智能化的天花板等,开源生态在竞争中至关重要。
  • 在 10-0 基础训练大模型中,Lora 生图环节有诸多设置,如模型强度调节、添加 lora 文件、输入正向提示词、选择生成图片数量和尺寸、调整采样器和调度器等。设置完成后点击开始生成,若对生成结果满意可复制随机种子用于下次近似生成,也可进行高清修复和放大。今日作业要求按照比赛要求收集主题素材并训练提交 lora 模型与案例图像。
  • 奇绩创坛潜空间分享会中,杨植麟提到大模型公司倾向面向生产力场景,目前业界卡在数据方面,应用公司在非生产力场景投入产出比更高,大模型开发者生态差是因为不具备高替换成本和规模效应等条件,做事应遵循寻找梯度最大方向并优化的原则。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

可以说,Qwen是国内唯一出现在OpenAI视野里,可以参与国际竞争的国产大模型。不久前,OpenAI创始人奥特曼在X上转发了一条OpenAI研究员公布的消息,GPT-4o在测试阶段登上了Chatbot Arena(LMSys Arena)榜首位置,这个榜单是OpenAI唯一认可证明其地位的榜单,而Qwen是其中唯一上榜的国内模型。早些时候,有人做了个LMSys榜单一年动态变化视频。过去一年内,国产大模型只有Qwen多次冲进这份榜单,最早出现的是通义千问14B开源视频Qwen-14B,后来是Qwen系列的72B、110B以及通义千问闭源模型Qwen-Max,得分一个比一次高,LMSys也曾官方发推认证通义千问开源模型的实力。在顶尖模型公司的竞争中,目前为止中国模型只有通义千问真正入局,能与头部厂商一较高下。开发者用脚投票的结果,显示了Qwen系列的受欢迎程度。目前为止,Qwen系列开源模型的累计下载量突破了1600万,国内外有海量开发者都基于Qwen开发了自己的模型和应用,尤其是企业级的模型和应用。Qwen的很多忠实拥趸是海外开发者,他们时常在社交平台发表“我们为什么没有这种模型”的溢美之词(配图详见附件)。可以说,通义大模型用行动证明了开源开放的力量。七、为什么大模型的生态建设如此重要?AI大模型是全球数字技术体系的竞争,这个体系包括芯片、云计算、闭源模型、开源模型、开源生态等等。中国信息化百人会执委、阿里云副总裁安筱鹏指出,全球AI大模型竞争的制高点是AI基础大模型,因为基础大模型决定了产业智能化的天花板,商业闭环的可能性,应用生态的繁荣以及产业竞争的格局。与此同时,开源生态在整个技术体系的竞争中也有着至关重要的作用。

10-0基础训练大模型

上图中,点击预览模型中间的生图会自动跳转到这个页面模型上的数字代表模型强度,可以调节大小,正常默认为0.8,建议在0.6-1.0之间调节当然,你也可以自己添加lora文件点击后会显示你训练过的所有lora的所有轮次VAE不需要替换正向提示词输入你写的提示词可以选择基于这个提示词一次性生成几张图选择生成图片的尺寸,横板、竖版、正方形采样器和调度器新手小白可以默认这个不换迭代步数可以按照需求在20-30之间调整CFG可以按照需求在3.5-7.5之间调整随机种子-1代表随机生成图所有设置都好了以后,点击开始生态,生成的图会显示在右侧如果有哪次生成结果你觉得很不错,想要微调或者高分辨率修复,可以点开那张图往下滑,划到随机种子,复制下来粘贴到i机种子这里,这样下次生成的图就会和这次的结果近似如果确认了一张很合适的种子和参数,想要搞清放大则点开高清修复,可以选择你想放大的倍数新手小白可以就默认这个算法迭代步数也是建议在20-30之间重回幅度根据需求调整,正常来说在0.3-0.7之间调整[heading1]今日作业[content]按照比赛要求,收集六个主题中一个主题的素材并且训练出lora模型后提交lora模型与案例图像提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd

奇绩创坛潜空间分享会

1.大模型公司究竟会做什么?Kimi一直想做SuperApp,原因是模型迭代需要在智力密度最高的场景内获取数据。因此面向生产力的场景,特别是知识密度高的,比如编程,高等教育等场景。因此小公司如果在模型公司的轨道上,更容易失去价值。1.目前业界卡在哪里?数据,数据,数据。scalinglaw发展到现在目前已经用掉了绝大部分文本数据,要想模型再获得指数型的提升,必须解决下面两个问题中的一个:合成数据视频数据理解注意这里说的视频数据不是简单的多模态对齐,因为对齐训练出来的模型只会做pairing。1.应用公司能做什么方向?在目前模型智能的前提下,相比生产价值模型更能提供情绪价值。说白了,模型现在还不是人,但大概学会了说人话。结合1来看,生产力场景既容易被大厂碾压又很难提供足够的价值,所以现在对小公司来说,做非生产力场景的投入产出比更高。同时小公司也能把更多精力放在体验上而非推理能力上。1.大模型开发者生态为什么差?开发者生态建立在某个技术有很高的替换成本,比如IOS开发。在此基础上开发者可以形成规模效应,但目前大模型生态不具备这两个条件。1.做事情的原则?这点是我自己的观察,植麟多次提到了“梯度”,并且应用在研发,产品,管理上。用模型训练的思维对公司和产品进行迭代。这个我也很赞同,好的产品和企业都是长出来的不是造出来的,是在得到新的数据的前提下迭代出来的而不是提前精密设计好的。寻找梯度最大的方向并向其优化,才能保证迭代速度。(来自小红书的分享)

其他人在问
aigc的当前生态
AIGC 的当前生态主要包括以下方面: 1. 概述:GenAI(生成式 AI)能够从已有数据中学习并生成新的数据或内容,利用 GenAI 创建的内容即 AIGC。作为强大的技术,能赋能诸多领域,但存在合规风险,我国对 AIGC 的监管框架由多部法律和规定构成。 2. 分类:AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用多种模型,如 GPT4 和 GeminiUltra;图像生成依赖多种技术,代表项目有 Stable Diffusion 和 StyleGAN 2;音视频生成利用多种模型,代表项目有 Sora 和 WaveNet。 3. 应用领域:AIGC 可应用于音乐生成、游戏开发、医疗保健等领域,在游戏开发和制作的整个生命周期的多个阶段都有应用,例如用文本生成平面图像,像 Midjourney、Stable Diffusion 和 DallE 2 等工具可将文本描述生成高质量二维图像。 4. 产品原型设计工具:目前有 UIzard、Figma、Sketch 等基于 AIGC 的工具可用于产品原型设计,其 AI 功能包括自动生成设计元素、提供设计建议、优化用户界面布局等。随着技术发展,未来可能会有更多专门针对产品原型设计的 AIGC 工具出现。
2024-12-13
AI生态图
AI 生态图主要包括以下内容: 关于 AI 产业的产业链结构,大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 基础设施层布局投入确定性强,但资金投入巨大,入行资源门槛高,未来国内可能更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 技术层处于技术爆炸时刻,迭代速度快,小规模团队需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层是广阔蓝海,当前从业者增加但成熟应用产品不多,“杀手级”应用稀少,普通个体和小团队推荐重点布局,有超级机会和巨大发展空间。 对于 AI 产业上中下游重点关注的企业(或产品),作者做了大量信息收集和汇总工作并绘制了相关图谱,但未避免广告嫌疑不展开详细说明,推荐搜索不了解的公司/平台(或产品)了解。 在游戏领域,生成式 AI 有影响,如从文本提示生成 2D 图像的工具 Midjourney、Stable Diffusion 和 DallE 2 等,已应用于游戏开发和制作的多个阶段,Midjourney 容易上手且图像生成速度快。
2024-11-28
AI生态图
AI 生态图主要包括以下内容: 1. AI 产业的产业链结构大致分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 基础设施层布局投入确定性强,但资金投入大,入行资源门槛高,未来国内可能更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 技术层处于技术爆炸期,迭代速度快,小规模团队需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层是广阔蓝海,当前从业者增加但成熟应用产品不多,“杀手级”应用稀少,普通个体和小团队推荐重点布局,有超级机会和巨大发展空间。 2. 关于 AI 产业上中下游重点关注的企业(或产品),作者做了大量信息收集和汇总工作并绘制了图,但未避免广告嫌疑不展开详细说明,建议搜索不了解的公司/平台(或产品)了解。 3. 在游戏领域,生成式 AI 有影响,如从文本提示生成 2D 图像是广泛应用领域之一,像 Midjourney、Stable Diffusion 和 DallE 2 等工具可用于游戏开发和制作的多个阶段,Midjourney 容易上手,图像生成速度快。
2024-11-28
请你以大疆产品为例,谈一谈未来大疆是否应该发展二手机的生态?如果你是二手业务的负责人,你会如何做?
大疆作为一家知名的科技公司,其产品在市场上具有较高的声誉和用户满意度。关于未来大疆是否应该发展二手机生态,这需要综合多方面因素来考虑。 从市场需求角度来看,随着消费者对性价比的追求以及环保意识的增强,二手机市场存在一定的潜力。然而,大疆产品通常以其先进的技术和高品质著称,二手机可能会面临技术更新换代快、维修保障等问题。 如果我是二手业务的负责人,首先会进行充分的市场调研,了解消费者对于大疆二手机的需求、价格预期以及关注点。建立严格的二手产品检测和评估标准,确保二手大疆产品的质量和性能符合一定的标准。同时,提供完善的售后服务和维修支持,让消费者购买二手产品无后顾之忧。还会制定合理的价格策略,既要保证有一定的利润空间,又要具有市场竞争力。此外,加强与大疆官方的合作,获取更多的技术支持和资源,共同推动二手机生态的发展。
2024-08-11
Dify怎么对接微信生态
在 Dify 的官网,我为你找到了一篇手把手教你如何将 Dify 应用接入微信生态的教程: 1. 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目:下载并安装依赖。 3. 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 5. 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:
2024-04-15
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20