直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI教育

回答

以下是关于 AI 教育的相关内容:

Sam Altman 在 X 上发表的《The Intelligence Age》一文中提到,我们的孩子将拥有虚拟导师,能够以任何语言和适合他们的节奏提供个性化的教学,类似概念还可应用于医疗保健改进、创建各种软件等领域。

人们对 AI 时代的教育怀有期待,是因为当前的应试教育体系存在诸多弊端,如题海战术、考试制度等。虽然教育资源比过去充裕,但学生的学习能力并未明显跃升,且在这套体系下培养出来的学生,创造性能力和创新性思维相对较差,还会让孩子对学习本身丧失兴趣。对于三四五六线城市的“小镇做题家”来说,选择有限,只能内卷。

此外,在“AI 摊主速成脑暴会”中,AI 教育与咨询方面包括 AI 应用培训、课程设计、商业化咨询、AI+行业应用咨询等,例如 AI 培训策划、商业化建议、产品思路分享、应用场景分析等。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AI 时代的教育 The Intelligence Age's Education - 知乎

这两天Sam Altman在X上发表了一篇题为《The Intelligence Age》的小作文(原文链接:[https:// ia.samaltman.com/](https://link.zhihu.com/?target=https%3A//ia.samaltman.com/)),在AI圈流传甚广,这篇文章比较长,而且信息也非常宽泛,有网友概况并提取了文章中的6个要点分别是:1.人工智能将成倍地增强人类的能力,实现今天看似魔术般的成就。2.社会是一种集体智慧,人工智能将极大地放大这种共享智慧。3.深度学习的可扩展性是人工智能快速发展和潜力的关键驱动力。4.人工智能驱动的智能时代有望实现前所未有的全球繁荣和问题解决。5.获得充足的计算和能源对于实现人工智能民主化和防止不平等至关重要。6.控制人工智能的风险对于最大限度地发挥其优势并确保积极的未来至关重要。当然笔者今天写这篇文章的目的也并非是要吹嘘一下最近openAI发布的o1模型有多么厉害或者多么神奇,而是看到Altman文中提到的智能时代有这样一句话:“我们的孩子将拥有虚拟导师,能够以任何语言和适合他们的节奏提供个性化的教学。类似的概念还可应用于医疗保健改进、创建人们想象的各种软件等领域。有了这些新能力,我们可以共享前所未有的繁荣。”读到这里自然就联想到最近一段时间以来,笔者一直在不断思考的一个问题,下个AI时代的教育到底应该是什么样子?那么,今天就借助奥特曼这篇文章的标题做一个具体的延展对The Intelligence Age‘s Education做一次深度的思考!Sam Altman的X平台主页

AI 时代的教育 The Intelligence Age's Education - 知乎

在畅想之前,我想简单聊聊人们为什么会对下个AI时代的教育怀有期待。谈起教育,我相信大部分人都对长时期以来的题海战术、考试制度、运行体系等等提出很多的或尖刻或温和的批评。似乎大家都非常了解应试教育体系之下不断内卷产生的种种弊端,但是对于如何解决这种弊端同时还能保证教育公平又显得无能为力和乏善可陈。举个最典型的例子就是刷题,比如下面两张图是人教版的小学三年级上册数学课本,满篇的题目可以说是从头到尾。我们的教育改革实践这么多年过去了,以刷题为核心的应试教育体系依然不可动摇。以至于后来慢慢演变出一个新的词语叫所谓的“小镇做题家”。其实我这里并不是想讨伐刷题不好,在目前的考试标准和形态之下,暂时还没有比刷题更高效,更具性价比的应试方法。但是这种以试题作为升学考试唯一标准的选拔方式的负面影响确实越来越大,典型代表就是在这套体系下培养出来的学生,创造性能力和创新性思维相对较差的情况,这种弊端在研究生、博士生阶段体现的更为明显。而且还有一个更为严重的问题是,无限内卷刷题会孩子们对让学习本身越来越丧失兴趣。平心而论当下的教育资源要比10年前,20年前信息不发达的时候充裕的多,今天在知乎、B站、douyin还有海外教育平台上都可以随处找到非常优质的课程与教材。但是我的感受却是这一代学生的学习能力并没有特别明显的跃升。而对于哪些在时代的洪流下的小镇做题家们来说,通过刷题来到大学之后迎来的不是打开新世界的大门,反而是愈加的迷茫与无所适从。诚然很多朋友也许会说,觉得应试不好可以选择出国,可以留学。我知道对于一二线的很多家庭来说,走应试的路线并非唯一选择,但是与此同时哪些三四五六线城市成长的“小镇做题家”们,真的没有太多的选择,除了往死里卷,其他的可选路径并不大多。

AI摊主速成脑暴会

|分类|内容|示例项目||-|-|-||AI图像处理|图像生成、照片修复与动起来、动漫化头像、老照片复活、创意壁纸制作|AI写真、老照片动起来(10积分)、卡通头像(10积分)、赛博头像定制(多样风格)||文案与内容创作|文案定制、朋友圈文案生成、爆款文案编写、创意故事、情话生成|产品文案优化(10积分)、AI土味情话(5积分)、个性化文案定制(10积分)、朋友圈鸡汤生成||音频与音乐制作|专属歌曲创作、音频处理、声音克隆、AI唱歌、背景音乐定制|制作专属歌曲(10积分)、声音克隆/视频对口型(20积分)、声音解梦音乐制作||视频处理|视频换脸、照片转视频、视频动漫化、视频剪辑、数字人制作|换脸(60积分)、视频动漫化、AI生成的视频脚本(20积分)、AI高清处理(10积分)||智能体与Coze|搭建智能体、GPTs创建、coze工作流、微信机器人|搭建智能体(50积分)、智能体体验(10积分)、Coze工作流(20积分)、微信机器人搭建(100积分)||AI教育与咨询|AI应用培训、课程设计、商业化咨询、AI+行业应用咨询|AI培训策划(20积分)、商业化建议(10-20积分)、产品思路分享(5积分)、应用场景分析|

其他人在问
普通人如何了解AI
普通人了解 AI 可以从以下几个方面入手: 1. 认识 AI 的本质:把 AI 当成一个黑箱,只需知道它是能理解自然语言并输出自然语言、模仿人类思维的东西,其生态位是似人而非人的存在。当使用时,要基于其“非人”的特点,通过清晰的语言文字压缩其自由度,明确告知任务、边界、目标、实现路径和所需知识。 2. 利用万能公式法:问 AI 【一个(xxx 职业)需要具备哪些知识?】,根据给出的知识框架,针对每个小点进一步询问,让 AI 帮助深度思考。 3. 寻找优质信息源:比如即刻 App 的“”等免费圈子,Twitter 和相关官网也是溯源的可选之处。若担心信息洪流,可采用只掌握最好产品、解决具体问题、关注核心能力、关注需求和逻辑、先提升认知再谈技巧等做减法的小 tips。 4. 了解基本概念:阅读「」熟悉术语和基础概念,包括人工智能的定义、主要分支及联系,浏览入门文章了解其历史、应用和发展趋势。 5. 开始学习之旅:在「」找到为初学者设计的课程,通过在线教育平台按自己节奏学习,推荐李宏毅老师的课程。 6. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块,如图像、音乐、视频等,并掌握提示词技巧。 7. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品并分享作品。 8. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。
2024-11-25
如何利用AI炒股
利用 AI 炒股可以通过以下几种方式: 1. Stocked AI:这是一个投资服务,提供每日股票推荐。其推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。 2. 博主林亦 LYI 的实践:在某种程度上实现了多 Agent 协作的能力来炒股。 需要注意的是,AI 在炒股中的应用仍存在一定的风险和不确定性,不能完全依赖其结果进行投资决策。在使用 AI 辅助炒股时,还需要结合自身的投资知识、经验和风险承受能力进行综合判断。
2024-11-25
ai和Chatgpt的区别
AI 和 ChatGPT 存在以下区别: 1. 侧重点不同:Character.ai 更注重人格属性,试图满足社交、情感、陪伴等需求;而 ChatGPT 注重提高效率和解放生产力。 2. 定义和性质: Gen AI/Generative AI 是“生成式人工智能”的正式称呼,是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 从 OpenAI 的官网来看,在 2022 年宣发时被称为一种模型,在帮助页面中又被称为一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。 ChatGPT 是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。其中,AGI 是通用人工智能,能够像人类一样思考、学习和执行多种任务的人工智能系统;NLP 是自然语言处理,即处理人类语言;LLM 是大型语言模型,数据规模很大,耗费资金多。
2024-11-25
关于ai的书籍推荐
以下是为您推荐的关于 AI 的书籍: 神经科学相关: 《认知神经学科:关于心智的生物学》(作者:Michael S. Gazzaniga; Richard B. Lvry; George R. Mangun):世界权威的认知神经科学教材,是认知神经科学之父的经典力作,系统涵盖了认知神经科学的诸多方面。 《神经科学原理》(作者:Eric R. Kandel; James H. Schwartz):能让您系统了解神经元的细胞和分子生物学、突触传递等内容。 《神经生物学:从神经元到脑》(作者:John G. Nicholls 等著):神经生物学领域的世界级名著,涵盖了神经科学的各个方面。 Python 和 AI 相关: Python 方面:《Python 学习手册》《Python 编程》。 AI 方面:《人类简史》《深度学习实战》。 希望这些推荐能满足您的需求。
2024-11-25
什么是AI
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。 对于 AI ,可以将其视为某种模仿人类思维、能够理解自然语言并输出自然语言的东西,就像一个黑箱,我们不必深究它如何理解,其生态位是一种似人而非人的存在。 最初,计算机由查尔斯·巴贝奇发明,用于按照明确的程序进行数字运算,现代计算机虽更先进,但仍遵循相同的受控计算理念。然而,对于像根据照片判断一个人的年龄这类任务,我们无法明确编程步骤,而这正是 AI 所感兴趣的。 在实际应用中,AI Review 是一项可查看代码库中最近更改以捕获潜在错误的功能,您还能提供自定义说明让其专注于特定方面,比如性能问题。目前有查看工作状态、查看与主分支的差异、查看上次提交等审核选项。
2024-11-25
哪个AI编程工具比较好?
以下是一些比较好的 AI 编程工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,助其更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码等多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手,基于自研基础大模型微调。 7. Codeium:由 AI 驱动,通过提供代码建议等帮助软件开发人员提高编程效率和准确性。 此外,Cursor 也是一款优秀的 AI 编程工具,它是专为人工智能辅助编程设计的现代化集成开发环境(IDE),具有 AI 辅助编码、代码自动补全、实时代码分析等多种特点,支持多语言、集成终端、Git 集成、自定义主题、跨平台和实时协作,能通过 AI 技术提高开发者生产力,使编码更智能高效。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。 Cursor 的下载地址:第一步,通过 https://www.cursor.com/ 链接进入 Cursor 产品主页后,在右上角点击下载,下载后解压安装。
2024-11-25
人工智能与教育相关的
以下是关于人工智能与教育相关的内容: 可以使用人工智能帮助教育,包括辅助自学、让教师生活更轻松及课程更有效。例如,可以要求人工智能解释概念,获取良好结果。同时要注意因人工智能可能产生幻觉,关键数据需依据其他来源仔细检查。相关提示如“一个很好的自动导师”,可通过“https://chat.openai.com/share/ec1018ec1d864160b587354253c7d5cb”找到直接链接激活 ChatGPT 中的导师。 有一些 AI+教育的案例和投稿,如“书籍推荐:三本神经科学书籍”“AI 赋能教师全场景”“未来教育的裂缝:如果教育跟不上 AI”“化学:使用大型语言模型进行自主化学研究”。 推荐阅读可汗学院创始人的新书《Brave New Words:How AI Will Revolutionize Education》(中文翻译为《勇敢的新词:人工智能如何彻底改变教育》),书中提到人工智能在教育领域的未来将与科技合作,让教育变得更好,并非为了抢走老师的风头,而是帮助老师抢风头。
2024-11-25
AI 在教育领域的落地场景
以下是 AI 在教育领域的落地场景: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生的行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师能够引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行安全实验操作,并立即得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。
2024-11-23
教育行业的,个性化推荐系统是怎么做的?
在教育行业中,个性化推荐系统的实现通常涉及以下几个方面: 1. 数据收集与分析:收集学生的学习行为、兴趣偏好、学习成绩等多方面数据,并进行深入分析。 2. 模型选择与训练:可以采用如大型语言模型等,并通过合适的算法和数据进行训练。 3. 提示策略应用:例如像 LLMRec 方法中提到的基本提示、推荐驱动提示、参与引导提示和推荐驱动+参与引导提示等策略,以提高推荐性能。 4. 考虑伦理和道德问题:要注意避免模型中的偏见,防止学生利用推荐系统作弊等问题。 例如,在“LLMRec:通过提示大语言模型进行个性化推荐”的研究中,提出了多种有效的提示策略,实验证明将原始内容描述与大语言模型生成的增强输入文本结合,并使用这些策略可以提升推荐效果。同时,像“沃顿商学院:面向教师和学生的人工智能简介”中也提到,人工智能在教育中的应用能预测学生行为和提供个性化教学内容,但也存在一些问题需要关注和解决。
2024-11-22
我是一个教育机构,我想使用ai代替我的家教老师团队,对学生进行1v1的辅导,包括:根据学生当天学习的课程出题,定时监督并整理错题,有什么ai工具,可以帮助我
目前在市场上,还没有能够完全替代家教老师团队进行 1v1 辅导,包括根据学生当天学习课程出题、定时监督并整理错题等全方位功能的单一 AI 工具。但您可以考虑结合使用以下几种 AI 相关的技术和工具来部分实现您的需求: 1. 智能学习管理系统:这类系统可以根据学生的学习进度和表现生成一些练习题,但可能无法完全针对当天学习的课程精准出题。 2. 自然语言处理工具:帮助分析学生的学习情况和问题,为后续的辅导提供一定的参考。 需要注意的是,AI 工具在教育中的应用仍处于不断发展和完善的阶段,不能完全替代人类教师的情感支持、个性化引导和灵活应变能力。
2024-11-18
我是一个教育机构,我想使用ai代替我的家教老师团队,对学生进行1v1的辅导,包括:根据学生当天学习的课程出题,定时监督并整理错题
目前的情况来看,使用 AI 代替家教老师团队进行 1v1 辅导,包括出题、监督和整理错题等工作,虽然具有一定的可行性,但也面临一些挑战。 从出题方面,AI 可以根据学生当天学习的课程内容,利用其强大的数据分析和算法能力生成相关题目。但需要确保题目质量和针对性,能够准确覆盖重点知识点,并适应学生的学习水平。 在监督方面,AI 可以通过设定时间提醒等方式,督促学生按时完成任务。然而,它可能无法像人类教师那样敏锐地察觉学生的情绪和学习状态变化,及时给予鼓励和支持。 对于整理错题,AI 能够快速分类和分析错题,但在解释错题原因和提供个性化的学习建议上,可能不如人类教师那么深入和灵活。 总之,虽然 AI 可以在一定程度上辅助这些工作,但完全替代家教老师团队可能还不太成熟,或许可以将 AI 与人类教师相结合,以达到更好的辅导效果。
2024-11-18
ai+教育相关
以下是一些与“AI + 教育”相关的案例和内容: 学习:用 AI 做播客笔记,干货为主的播客可用此方式做笔记,还能顺便学英语。 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用这条 prompt,2 小时帮同学干完了 3 篇调研报告,先确定调研报告大纲目录。 做调研:用 ChatGPT 做调研,研究其如何帮助创建用户体验调查或其他调查。 书籍推荐:三本神经科学书籍,AI 是多学科交叉产物,基础学科知识能为运用 AI 打开新天地。 AI 赋能教师全场景,来自 MQ 老师的投稿贡献。 未来教育的裂缝:如果教育跟不上 AI,人工智能融入教育领域为教学模式带来颠覆性改变。 化学:使用大型语言模型进行自主化学研究。 医疗:健康生物制药的研究,AI 加速医疗健康生物制药研究,在抗癌等方面有重要作用。 AI 洞察:一线医生如何实际使用 ChatGPT,再现 ChatGPT 在美国一流医院的实际场景。 笔记:与 AI + 教育前辈聊天,让某人主动学习 AI 的有效方式是让其看到 AI 能高效完成手头工作。 数学:OpenAI 发表论文大幅提高 ChatGPT 的数学准确性。
2024-11-18