Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何利用AI炒股

Answer

利用 AI 炒股可以通过以下几种方式:

  1. Stocked AI:这是一个投资服务,提供每日股票推荐。其推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。
  2. 博主林亦 LYI 的实践:在某种程度上实现了多 Agent 协作的能力来炒股。

需要注意的是,AI 在炒股中的应用仍存在一定的风险和不确定性,不能完全依赖其结果进行投资决策。在使用 AI 辅助炒股时,还需要结合自身的投资知识、经验和风险承受能力进行综合判断。

Content generated by AI large model, please carefully verify (powered by aily)

References

GPTs 、中间层、Chatbot虚拟社交、AI Agent, 大模型应用最新方向解析

准确的来说,AI Agent指的是一种智能代理系统,它接近人类的大脑,可形成记忆、达成行动规划、自动交互、主动预测。目前AI Agent的概念在市场上并没有达成共识,存在被广泛滥用的现象。(很多Chatbot应用给Bot冠以“智能体”的名称,准确的说是对Agent的误用)[heading3]AI Agent应用的特点:[content]个性化:随着用户的使用越来越了解用户习惯和想法,从而作出喜好预测Dot App在对话中了解用户喜好,随后为用户推荐新的咖啡店自主完成任务:Auto GPT:用户输入一个目标后,可自主执行任务、递归地开发和调试代码多Agent协作斯坦福大学的SmallVille(小镇)项目,现已开源25个人工智能体居住在一个沙盒虚拟城镇中通过复杂的社交互动来执行他们的日常生活Fixie AI在收到用户请求后启动多个负责不同模块的Agent进行数据查询和传递,最终生成邮件内容给客户回复博主林亦LYi的《AI炒股?我开了一家员工全是AI的公司,自动帮我炒股》就在某种程度上实现了多Agent协作的能力:目前,AI Agent应用大多集中在2B场景,面向个人消费者的产品少之又少。一方面是高度智能化的Agent能力需要打磨,概念落地还有较长一段距离;一方面是AI和娱乐消费诉求的结合还几乎没有,其主要带来的是生产方式变革和效率变革。个人消费者方向,目前只看到“私人助理”场景。

AIGC Weekly #12

[Berri-快速创建AI机器人](https://berri.ai/)[content]通过表单上传文件和填写相关内容后就可以快速将机器人集成到现有的办公软件和环境中。[heading2][content][Deep Agency-你的虚拟摄影师](https://www.deepagency.com/)[content]Danny Postma的产品Deep Agency在上周正式公测了,定位是虚拟的影楼和摄影师。上线24小时已经达到了1361美元的MRR。上传20张你自己的照片后,可以帮你生成你自己的虚拟照片,可以自定义背景、氛围、相机类型、光圈等细节。订阅价格是29美元一个月。[heading2][Wonder Studio-快速融合CG角色到现实场景](https://wonderdynami[content]太强了,语言的描述非常无力建议看一下演示视频。一种AI工具,可自动为CG角色制作动画、灯光并将其组合到真人场景中。可以非常完美的将3D角色融入一段拍好的视频里。[heading2][Chat.d-id-D-ID推出的虚拟聊天机器人](https://chat.d-id.com/?[content]D-ID出品的可以说话的ChatGPT机器人,利用了ChatGPT的语言理解和D-ID强大的面部处理技术。[heading2][Stockedai-AI炒股](https://www.stockedai.com/)[content]Stocked AI是一个投资服务,提供每日股票推荐。这些推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。[heading2][Atris-AI社区管理员](https://www.notion.so/c70f40f16b97[content]Atris是一款智能社区管理员。将所有文档、Slack和Discord频道以及博客文章训练它,Atris会创建一个机器人供您的社区成员与之交流。无需支付大量社区管理员和开发者关系费用,Atris使得社区管理可扩展化。

Others are asking
AI的发展历史
AI 的发展历史可以追溯到二十世纪中叶,大致经历了以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论等。心理学家麦卡洛克和数学家皮特斯在 1943 年提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科被确立下来。 2. 知识驱动时期(1970s 1980s):这一时期专家系统、知识表示、自动推理较为流行。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。当前的前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型、多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速等。 然而,AI 的发展并非一帆风顺,20 世纪 70 年代曾出现“人工智能寒冬”,因为当时符号推理等方法在实现应用场景大规模拓展时面临诸多困难。但随着计算资源变得便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,在过去十年中,“人工智能”一词常被用作“神经网络”的同义词。
2025-01-31
我是一名会计从业者,可以怎样利用AI赚钱
作为一名会计从业者,您可以通过以下方式利用 AI 赚钱: 1. 利用生成式 AI 改进金融服务团队的内部流程,简化财务团队的日常工作流程。例如,帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析的自动化;发现模式,并从更广泛、更复杂的数据集中为预测建议输入,为公司决策提供依据。 2. 借助生成式 AI 自动创建文本、图表、图形等内容,并根据不同的示例调整报告,无需手动将数据和分析整合到外部和内部报告中。 3. 利用生成式 AI 综合、总结税法和潜在的扣除项,并就其提出可能的答案。 4. 利用生成式 AI 自动生成和调整合同、采购订单和发票以及提醒。 此外,您还可以研究 Prompt 提示词,例如像雪梅 May 那样,尝试不同的方法,让 AI 识别会计分类,训练出一个在会计专业领域能提高效率的 AI。
2025-01-31
总结一下当前AI发展现状以及指导非开发者一类的普通用户如何使用及进阶使相关工具
当前 AI 发展现状: 涵盖了不同领域的应用和发展,如电子小说行业等。 包括了智能体的 API 调用、bot 串联和网页内容推送等方面。 对于非开发者一类的普通用户使用及进阶相关工具的指导: 可以先从国内模型工具入手,这些工具不花钱。 学习从提示词开始,与模型对话时要把话说清,强调提示词在与各类模型对话中的重要性及结构化提示词的优势。 对于技术爱好者:从小项目开始,如搭建简单博客或自动化脚本;探索 AI 编程工具,如 GitHub Copilot 或 Cursor;参与 AI 社区交流经验;构建 AI 驱动的项目。 对于内容创作者:利用 AI 辅助头脑风暴;建立 AI 写作流程,从生成大纲开始;进行多语言内容探索;利用 AI 工具优化 SEO。 若想深入学习美学概念和操作可报野菩萨课程。国内模型指令遵循能力较弱时,可使用 launch BD 尝试解决。
2025-01-31
怎么制作一个AI agent?
制作一个 AI Agent 通常有以下几种方式和步骤: 方式: 1. Prompttuning:通过 Prompt 来构建大脑模块,但一般适合拟人化不是很重的情况,其缺点是使用的 Prompt 越长,消耗的 Token 越多,推理成本较高。 2. Finetuning:针对“有趣的灵魂”,通过微调一个定向模型来实现,能将信息直接“记忆”在 AI 的“大脑模块”中,提高信息提取效率,减少处理数据量,优化性能和成本。 3. Prompttuning + Finetuning:对于复杂情况,一般是两种方式结合。 步骤(以工作流驱动的 Agent 为例): 1. 规划: 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-01-31
ai发展现状
目前 AI 的发展现状呈现出以下特点: 1. 持续学习和跟进是关键:AI 是快速发展的领域,新成果和技术不断涌现。要通过关注新闻、博客、论坛和社交媒体,加入社群和组织,参加研讨会等方式保持对最新发展的了解。 2. 《2024 年度 AI 十大趋势报告》发布:从技术、产品、行业三个维度勾勒 AI 现状和未来走势,基于长期理解和积淀,持续跟踪领域创新、洗牌和动态,并结合与众多机构的交流。 3. 2024 年人工智能现状: 更多资金投入:预计明年会有团队花费超 10 亿美元训练单个大型模型,生成式 AI 热潮持续且更“奢华”。 计算压力挑战:政府和大型科技公司承受计算需求压力,逼近电网极限。 AI 介入选举:虽预期影响尚未成真,但不能掉以轻心。 总之,人工智能领域充满惊喜、伦理挑战和大量资金,各方势力竞相角逐,像一场激动人心的 UFC 比赛。
2025-01-31
如何用AI写新闻
以下是关于如何用 AI 写新闻的相关内容: 好用的 AI 新闻写作工具: 1. Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等,节省写作时间并提高效率。 2. Writesonic:专注写作,提供新闻稿件生成、标题生成、摘要提取等功能,智能算法能根据用户信息生成高质量新闻内容,适合新闻写作和编辑人员。 3. Jasper AI:主打博客和营销文案,也可用于生成新闻类内容,写作质量较高,支持多种语言。 儿童新闻百事通的相关内容: 1. 新闻获取:通过插件实现新闻搜索。 2. 新闻可信度分析:根据搜索的新闻内容,通过大模型推理,列出判断依据,包括来源检查、信息一致性、官方通知、详细性与具体性、社会知晓度、矛盾信息等,并对新闻进行评分。 3. 新闻转写:用户提供新闻关键词,bot 调用插件搜索对应的新闻信息,并转写成 6 12 岁儿童能听懂(看懂)的新闻,工作流内嵌入新闻搜索插件,运用大模型进行转写,再采用卡片形式输出。 4. 新闻故事创作:根据转写后的新闻内容,生成适合儿童读的新闻故事,对新闻内容进行拓展和再次创作,采用两层工作流嵌套的方式实现。 搭建 AI 工作流: 搭建 AI 工作流不是一蹴而就的,是一个不断迭代优化的过程。要培养 AI 工作流思维习惯,遇到事情思考“这个事情 AI 能帮我做什么”。接下来会用公众号写作场景实战演示如何梳理一套 AI 工作流,详细拆解公众号写作的工作流,梳理出可嵌入 AI 工具的关键节点,提供可落地执行的 AI 写作提效方案。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-31
本网站都有哪些讲Ai量化炒股的学习资料
很抱歉,目前本网站没有关于 AI 量化炒股的学习资料。
2025-01-29
国内AI炒股的工具
目前国内 AI 炒股的工具相对较少。不过,博主林亦 LYi 的《AI 炒股?我开了一家员工全是 AI 的公司,自动帮我炒股》在某种程度上实现了多 Agent 协作的能力。 需要注意的是,AI Agent 应用仍处于探索阶段,其概念在市场上尚未达成共识,存在被滥用的现象。准确来说,AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化的特点,能随着用户的使用越来越了解用户习惯和想法,从而作出喜好预测,比如 Dot App 在对话中了解用户喜好,随后为用户推荐新的咖啡店。同时,AI Agent 能够自主完成任务,如 Auto GPT 可在用户输入目标后,自主执行任务、递归地开发和调试代码。此外,多 Agent 协作的应用也有,如斯坦福大学的 SmallVille(小镇)项目已开源,25 个人工智能体居住在一个沙盒虚拟城镇中通过复杂的社交互动来执行日常生活,Fixie AI 在收到用户请求后启动多个负责不同模块的 Agent 进行数据查询和传递,最终生成邮件内容给客户回复。 目前,AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少之又少。一方面是高度智能化的 Agent 能力需要打磨,概念落地还有较长一段距离;另一方面是 AI 和娱乐消费诉求的结合还几乎没有,其主要带来的是生产方式变革和效率变革。个人消费者方向,目前只看到“私人助理”场景。
2024-12-28
ai 炒股
目前在 AI 领域,关于 AI 炒股有以下相关信息: 博主林亦 LYi 的《AI 炒股?我开了一家员工全是 AI 的公司,自动帮我炒股》在某种程度上实现了多 Agent 协作的能力。 元子进行了关于 AI 股票信息收集的相关工作,如搞投票、拆解或者有用排行榜等,同时提供了一些相关链接: 。 需要注意的是,目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少之又少。一方面是高度智能化的 Agent 能力需要打磨,概念落地还有较长一段距离;一方面是 AI 和娱乐消费诉求的结合还几乎没有,其主要带来的是生产方式变革和效率变革。个人消费者方向,目前只看到“私人助理”场景。
2024-12-19
AI炒股助手
以下是关于 AI 炒股助手的相关信息: 目前,AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品较少。AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化、自主完成任务、多 Agent 协作等特点。 在炒股方面,博主林亦 LYi 实现了某种程度上的多 Agent 协作能力。此外,Stocked AI 是一个投资服务,提供每日股票推荐,其推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。 还有一个摊位信息提到“AI+交易:来定制专属于你的私人高级交易顾问吧!”,其思路是将交易与 AIGC 相结合,打造私人高级交易顾问。但对于个人投资者而言,心态在交易中起着关键作用,单纯迷信技术分析提高胜率实现长期稳定盈利不可行,新人往往对交易理论不熟悉,多种策略配合或能提高理论胜率。
2024-12-17
《AI 炒股?我开了一家员工全是 AI 的公司,自动帮我炒股》
AI 炒股方面,目前有一些相关的应用和服务。例如 Stocked AI 是一个投资服务,它提供每日股票推荐,这些推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。 博主林亦 LYI 开了一家员工全是 AI 的公司来自动炒股,在某种程度上实现了多 Agent 协作的能力。但需要注意的是,目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品相对较少。一方面高度智能化的 Agent 能力还需要进一步打磨,概念落地还有较长距离;另一方面 AI 和娱乐消费诉求的结合几乎没有,其主要带来的是生产方式变革和效率变革。在个人消费者方向,目前只看到“私人助理”场景。
2024-12-04
AI炒股软件推荐
以下是为您推荐的一些 AI 炒股相关的软件: 1. Stocked AI(https://www.stockedai.com/):这是一个投资服务,提供每日股票推荐。其推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。 需要注意的是,AI 炒股软件虽然能提供一定的辅助和参考,但股市投资存在风险,不能完全依赖软件的预测和推荐。在进行投资决策时,还需要结合自身的财务状况、投资目标、风险承受能力以及对市场的深入研究和分析。
2024-12-04
如何学习利用ai工作
以下是关于如何学习利用 AI 工作的一些建议: 1. 获取信息和学习东西: 免费选项:可以使用。 付费选项:通常必应是较好的选择。对于儿童,(由 GPT4 驱动)能提供良好的人工智能驱动辅导。 注意事项:使用人工智能作为搜索引擎时要谨慎,因其存在幻觉风险,且多数未连接互联网。但有研究表明,在特定情况下(如技术支持、决定吃饭地点或获取建议),必应可能比谷歌更好。 教育方面:人工智能可用于自学,能解释概念并获得较好结果。例如,。但要根据其他来源仔细检查关键数据。 2. 写东西: 草拟初稿:包括博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等,只需给出提示,人工智能就能完成,且通过提高提示和与系统互动能获得更好效果。 优化写作:将文本粘贴到人工智能中,要求其改进内容、提供针对特定受众的建议、创建不同风格的草稿、使内容更生动或添加例子,以激发自己做得更好。 完成任务:把 AI 当作实习生,让其处理没时间做的事情,如写邮件、创建销售模板、提供商业计划的下一步等。 保持动力:当在任务中遇到困难挑战而分心时,AI 能提供保持动力的方式。
2025-01-28
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
如何利用AI读书
以下是关于如何利用 AI 读书的一些方法和建议: 1. 尝试撰写结构化 prompt 或使用李继刚等的 prompt 最佳实践。 2. 进行 AI 绘画,画一幅能表达中秋的画面。 3. 实操:在中找一些案例实操。 4. 数据:查看 AI 产品榜数据库>。 5. 阅读:通往 AGI 之路知识库阅读,每日小互的推特阅读获取最新动态:http://waytoagi.com/xiaohu。 6. 探索:生成式视频案例可以找一些欣赏,有机会自己动手做一个视频。 在读书时,可参考以下案例: 1. 如读万维钢的新书《拐点》时,看到有触动但需保持批判性思考和怀疑的文本,若足够强势,当前 AI 对人的作用有三个:信息杠杆、发现自己真正想要的、帮助形成自己的观点和决策。 2. 将上述书摘整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。 3. 基于笔记中提到的 AI 对人的三种最终的赋能模式,以自己深度思考的问题为例,践行这套方法论,体会“信息杠杆”如何令“思维换挡”,感受如何“让自己发现究竟想要什么”。 4. 通过 AI 信息杠杆,利用 AI 搜索引擎和大模型,迅速掌握“如何用好飞书文档”“markdown 语法基础”并结合两者完成“永飞书创建提示词库、飞书+markdown 打造个人知识库”等思考。 5. 基于上述实践,生成“自己的观点和决策”,并将其打造成体系化的内容产品,实现价值。 同时,虽然在利用 AI 辅助写作等方面可能存在一些困难,如打断心流、失去掌控等,但应保持好奇和开放心态,为自己和孩子们寻找更多借助 AI 拓展思维边界的方式。
2025-01-22
利用自己的声音歌唱AI生成歌曲
以下是一些利用自己的声音歌唱 AI 生成歌曲的相关信息: 1. LAIVE:这是一个利用 AI 技术一次性生成音乐、歌词、主唱等的创作平台。使用者可以选择喜欢的类型和情调,上传参考音源,AI 会通过分析生成音乐,还可以选择主唱和修改歌词,目前为开放测试阶段。输入促销代码“LAIVEcreator”可获得 50 代币(入口在个人资料),令牌有效期为输入代码后的 30 天,促销码失效日期为 4 月 17 日。链接:https://www.laive.io/ 2. Combobulator:DataMind Audio 推出的基于 AI 的效果插件,利用神经网络通过样式转移的过程重新合成输入音频,从而使用您自己的声音重现其他艺术家的风格。链接:https://datamindaudio.ai/ 3. 大峰的经验分享:用 Suno 生成歌曲时,在填写歌曲风格时填写少量风格词,如中国风,给 AI 更多发挥空间。靠音乐审美从生成的歌曲中选出中意的歌曲。将歌词发给 GPT 并告知想法,让其以英文 AI 绘画提示词的形式提供每句歌词的每个分镜,然后丢进 AI 生图平台(如 Midjourney)生成图片,再用 Runway 进行图生视频。 4. UDIO 制作音乐:Udio 不会使用艺术家的声音生成歌曲,在幕后风格参考会被一组相关标签替换。在文本输入下方有两种类型的建议标签可点击添加到提示中,自动完成是当前单词的建议标签补全,您可以移动插入符号到提示的任何部分,相应更改完成。
2025-01-20
如何利用Ai为我们工作
以下是利用 AI 为我们工作的一些方法: 1. 写作方面: 草拟各种初稿,如博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等,只需给出提示。 提升写作质量,将文本粘贴到 AI 中,要求其改进内容、提供针对特定受众的建议、创建不同风格的草稿、使内容更生动或添加例子,以激发自己做得更好。 帮助完成任务,如写邮件、创建销售模板、提供商业计划的下一步等。 从写作困难中解脱,让自己更有动力。 2. 获取信息和学习方面: 利用 AI 辅助教育,包括自学。可以要求 AI 解释概念,能获得较好的结果。但要注意因 AI 可能产生幻觉,对关键数据要根据其他来源仔细检查。
2025-01-15